Exemplo n.º 1
0
 def load_mat(self):
     filename = QFileDialog.getOpenFileName(self, 'Open file',
                                            '~', "mat files (*.mat)")
     if filename[0] != "":
         try:
             self.holder.parse_mat(filename[0])
             self.partener.histogram()
         except Error as e:
             print_error_message(e.what())
    def save(self):
        if not self.model.set():
            print_error_message("Please train the model")
            return
        path = QFileDialog.getSaveFileName(
            self, "Save file", "", ".mat"
        )[0]

        savemat(path, self.model.getWeightDic())
Exemplo n.º 3
0
 def load_imgs(self):
     files = QFileDialog.getOpenFileNames(self, 'Open file',
                                         '~', "Image files (*.jpg *.jpeg *.png)")
     filenames = files[0]
     if len(filenames) != 0:
         try:
             self.holder.parse_images(filenames)
             self.partener.imshow(num=min(10, len(filenames)))
         except Error as e:
             print_error_message(e.what())
Exemplo n.º 4
0
    def plotEigenValues(self):
        if not self.model.isFitted():
            print_error_message("Please fit the model first")
            return
        idx = self.getSelectedEigenValues()
        self.model.getEigenvectors()

        vecs = self.model.getEigenvectors()[idx]
        self.plotWidget.renderHolder().give(vecs)
        self.plotWidget.imshow()
Exemplo n.º 5
0
    def chooseFirstKEigenValues(self):

        k = self.firstKField.text()
        if k == "":
            print_error_message("K is required")
            return
        k = int(k)
        if not self.model.isFitted():
            print_error_message("Please fit the model first")
            return

        for i in range(k):
            self.checkboxes[i].setChecked(True)
Exemplo n.º 6
0
    def fit(self):
        self.checkboxes = []
        self.clearPlot()

        if not self.holder.loaded():
            print_error_message("Please load data first")
            return

        X = self.holder.fetchAll()

        self.model.setup(X)
        self.model.fit()

        evs = self.model.getEigenvalues()
        self.showEigenValues(evs)
    def fit(self):
        self.historyField.setText("")
        if not self.holder.loaded():
            print_error_message("Please load data first")
            return

        try:
            self.reg = float(self.regField.text())
            print("reg: ", self.reg)
        except:
            print_error_message("Invalid regularization, must be a real number")
            return

        try:
            self.order = int(self.orderField.text())
            print("order: ", self.order)
        except:
            print_error_message("Invalid order, must be a integer")
            return

        try:
            self.learning_rate = float(self.learningrateField.text())
            print("learning rate: ", self.learning_rate)
        except:
            print_error_message("Invalid learning rate, must be a real number")

        try:
            self.maxiter = int(self.maxiterField.text())
            print("max iter: ", self.maxiter)
        except:
            print_error_message("Invalid max iter, must be a real number")

        self.optimizer = self.optimizerField.currentText()
        print("optimizer: ", self.optimizer)

        X, y, title = self.holder.fetch_ordered(self.order)


        self.model.setup(X, y, regularization=self.reg)

        def callback(iter, loss):
            self.historyField.append("iter: %d, loss: %.2f"%(iter, loss))
        self.model.fit_gradient_descent(self.learning_rate, self.maxiter, self.optimizer, callback=callback)


        if len(self.holder.shape()) == 1:
            self.plot()
Exemplo n.º 8
0
 def createNewWindow(self, classname:str):
     try:
         self.newwindow =  render_window(classname)
         self.newwindow.show()
     except Error as e:
         print_error_message(e.what())