Exemplo n.º 1
0
    def extractPatch_2D_patchs_landmark(self):
        """ This function extraccts 2D patches using land marks from an XML file"""

        if self.appply_on_batch_files is False:  # single image
            img_name = self.image_name
            img_name = os.path.split(img_name)
            img_name = img_name[-1]
            img_name_split = img_name.split(".")
            self.img_name_ = img_name_split[0]

            # convert image to 8 bit
            self.data = self.to_8bit_(self.data)

            self.do_2D_patch_extraction()

        else:
            assert len(os.listdir(self.img_source_folder)) or \
                   len(os.listdir(self.xml_source_folder)), 'source folder is empty'
            assert len(os.listdir(self.xml_source_folder)) == len(os.listdir(self.img_source_folder)), \
                'number of xml file and image files shoud be same, BUT, found different'

            img_files = os.listdir(self.img_source_folder)
            xml_files = os.listdir(self.xml_source_folder)
            for images_name, xml_name in zip(img_files, xml_files):
                self.image_name = images_name
                # get image extension
                img_name = self.image_name
                img_name = os.path.split(img_name)
                img_name = img_name[-1]
                img_name_split = img_name.split(".")
                self.img_name_ = img_name_split[0]
                img_extension = img_name_split[-1]

                name_ = os.path.join(self.img_source_folder, images_name)
                if img_extension == 'dcm':
                    self.data = read_dicom(name_)
                elif img_extension == 'nii' or img_extension == 'gz' or img_extension == 'nii.gz':
                    self.data = read_nii(name_)
                else:
                    self.data = read_image(name_)

                # convert image to 8 bit
                self.data = self.to_8bit_(self.data)

                # read XML file
                self.landmark_path = os.path.join(self.xml_source_folder,
                                                  xml_name)
                lmark = get_type_center_from_XML(self.landmark_path)

                self.landmark = lmark

                # apply augmentation
                self.do_2D_patch_extraction()
        print('Patch Generation done!')
    def load_reference_image(self):
        filter = "All Files (*);;image files (*.nii.gz *.png *.tif *.PNG *.dcm)"
        title = "Select refernce image"
        ref_image_name = self.openFileNameDialog(filter, title)

        # self.ref_image  = io.imread(image_name)
        # get image extension
        img_name = ref_image_name
        img_name = os.path.split(img_name)
        img_name = img_name[-1]
        img_name_split = img_name.split(".")
        img_extension = img_name_split[-1]

        if img_extension == 'dcm':
            self.ref_image = read_dicom(ref_image_name)
        elif img_extension == 'nii' or img_extension == 'gz' or img_extension == 'nii.gz':
            self.ref_image = read_nii(ref_image_name)
        else:
            self.ref_image = read_image(ref_image_name)
Exemplo n.º 3
0
    def apply_otherpreprocessing(self):
        """
        this function cheks if it the operation is requested on a single image or to abatch files and call
        the respective function
        :return:
        """

        if self.appply_on_batch_files is False:  # single image
            img_name = self.image_name
            img_name = os.path.split(img_name)
            img_name = img_name[-1]
            img_name_split = img_name.split(".")
            self.img_name_ = img_name_split[0]
            self.do_preprocessing()

        else:  # apply to all images in the folder
            assert len(os.listdir()), 'source folder is empty'
            files = os.listdir(self.source_folder)
            for images_name in files:
                self.image_name = images_name
                # get image extension
                img_name = self.image_name
                img_name = os.path.split(img_name)
                img_name = img_name[-1]
                img_name_split = img_name.split(".")
                self.img_name_ = img_name_split[0]
                img_extension = img_name_split[-1]
                name_ = os.path.join(self.source_folder, images_name)
                if img_extension == 'dcm':
                    self.input_image = read_dicom(name_)
                elif img_extension == 'nii' or img_extension == 'gz' or img_extension == 'nii.gz':
                    self.input_image = read_nii(name_)
                else:
                    self.input_image = read_image(name_)

                self.do_preprocessing()
        print('All requested preprcessing are done!')
    def loadImageimage_data(self, apply_to_folder_files=False):

        if apply_to_folder_files is True:
            self.source_folder = str(
                QFileDialog.getExistingDirectory(
                    self, "Select a directory containing images"))

            if os.path.isdir(self.source_folder) is False or len(
                    os.listdir(self.source_folder)) is 0:
                QMessageBox.warning(
                    self, "Warning",
                    "Please select a folder or the directory is empty")
            else:
                self.image_data = None
                self.image_name = None
        else:
            filter = "All Files (*);;image files (*.nii.gz *.png *.tif *.PNG *.dcm)"
            title = "Select image or folder"
            self.image_name = self.openFileNameDialog(filter, title)

            if os.path.isdir(self.image_name) is True:
                print('you have selected a folder, please select a file!')
            else:

                # get image extension
                img_name = self.image_name
                img_name = os.path.split(img_name)
                img_name = img_name[-1]
                img_name_split = img_name.split(".")
                img_extension = img_name_split[-1]

                # allowed image formats
                image_format = ('.png', '.PNG', '.tif', '.dcm', '.nii',
                                'nii.gz')

                assert  self.image_name.endswith(image_format) is True, 'selected file doesnot  have supported image extension. allowed image ' \
                                                                        'image extensions are (.png, .PNG, .tif, .dcm, .nii, nii.gz)'

                if img_extension == 'dcm':
                    self.image_data = read_dicom(self.image_name)
                elif img_extension == 'nii' or img_extension == 'gz' or img_extension == 'nii.gz':
                    self.image_data = read_nii(self.image_name)
                else:
                    self.image_data = read_image(self.image_name)

                # display image

                # imaage shape
                S = self.image_data.shape
                if len(S) == 2:  # 2d image
                    self.slider.setMinimum(0)
                    self.slider.setMaximum(0)
                    self.displayNDArray(self.image_data)

                else:  # 3D image
                    N = S[-1]

                    self.slider.setMinimum(0)
                    self.slider.setMaximum(N - 1)
                    self.slider.setValue(int(N / 2))
                    self.slider.setTickInterval(1)

                    self.displayNDArray(self.image_data[:, :, int(N / 2)])
Exemplo n.º 5
0
    def extractPatch_2D5_patchs_mask_gt(self):
        """
           Extract 2.5D patches from 3D image with ground truth image provided.
           """
        # the size of the patch will only depend on the first patchg dimension
        patch_size_temp = (self.patch_dim[0], self.patch_dim[0],
                           self.patch_dim[0])

        if self.appply_on_batch_files is False:  # single image
            # get image name and extension
            img_name = self.image_name
            img_name = os.path.split(img_name)
            img_name = img_name[-1]
            img_name_split = img_name.split(".")
            self.img_name_ = img_name_split[0]

            # for gt image
            gt_image_name = self.gt_img_path
            # get image extension
            gt_image_name = os.path.split(gt_image_name)
            gt_image_name = gt_image_name[-1]
            gt_img_name_split = gt_image_name.split(".")
            gt_img_extension = gt_img_name_split[-1]

            name_ = os.path.join(self.gt_img_path)
            if gt_img_extension == 'dcm':
                self.gt_data = read_dicom(name_)
            elif gt_img_extension == 'nii' or gt_img_extension == 'gz' or gt_img_extension == 'nii.gz':
                self.gt_data = read_nii(name_)
            else:
                self.gt_data = read_image(name_)

            # convert to 8 bit
            self.data = self.to_8bit_(self.data)

            # extract and  save patchs

            im_patches, gt_patches = extract_3d_patches(self.data,
                                                        patch_size_temp,
                                                        self.stride,
                                                        gt_data=self.gt_data)

            output_patches = self.make_2D5_patch_from_3d(im_patches)

            path_ = os.path.join(self.generated_patches_folder,
                                 self.img_name_ + '_images_.npy')

            np.save(path_, output_patches)

            output_patches_gt = self.make_2D5_patch_from_3d(gt_patches)

            path_ = os.path.join(self.generated_patches_folder,
                                 self.img_name_ + '_gt_.npy')

            np.save(path_, output_patches_gt)

        else:  # for batch of files
            assert len(os.listdir(self.img_source_folder)) or \
                   len(os.listdir(self.gt_path_source_folder)), 'source folder is empty'
            assert len(os.listdir(self.gt_path_source_folder)) == len(os.listdir(self.img_source_folder)), \
                'number of xml file and image files shoud be same, BUT, found different'

            img_files = os.listdir(self.img_source_folder)
            gt_files = os.listdir(self.gt_path_source_folder)
            for images_name, gt_name in zip(img_files, gt_files):
                self.image_name = images_name
                # get image extension
                img_name = self.image_name
                img_name = os.path.split(img_name)
                img_name = img_name[-1]
                img_name_split = img_name.split(".")
                self.img_name_ = img_name_split[0]
                img_extension = img_name_split[-1]

                name_ = os.path.join(self.img_source_folder, images_name)
                if img_extension == 'dcm':
                    self.data = read_dicom(name_)
                elif img_extension == 'nii' or img_extension == 'gz' or img_extension == 'nii.gz':
                    self.data = read_nii(name_)
                else:
                    self.data = read_image(name_)

                # convert to 8-bit
                self.data = self.to_8bit_(self.data)

                # for gt image
                gt_image_name = gt_name
                # get image extension
                gt_image_name = os.path.split(gt_image_name)
                gt_image_name = gt_image_name[-1]
                gt_img_name_split = gt_image_name.split(".")
                gt_image_name = gt_img_name_split[0]
                gt_img_extension = gt_img_name_split[-1]

                name_ = os.path.join(self.gt_path_source_folder, gt_name)
                if gt_img_extension == 'dcm':
                    self.gt_data = read_dicom(name_)
                elif gt_img_extension == 'nii' or img_extension == 'gz' or img_extension == 'nii.gz':
                    self.gt_data = read_nii(name_)
                else:
                    self.gt_data = read_image(name_)

                # extract and  save patchs

                im_patches, gt_patches = extract_3d_patches(
                    self.data,
                    patch_size_temp,
                    self.stride,
                    gt_data=self.gt_data)

                output_patches = self.make_2D5_patch_from_3d(im_patches)

                path_ = os.path.join(self.generated_patches_folder,
                                     self.img_name_ + '_images_.npy')

                np.save(path_, output_patches)

                output_patches_gt = self.make_2D5_patch_from_3d(gt_patches)

                path_ = os.path.join(self.generated_patches_folder,
                                     self.img_name_ + '_gt_.npy')

                np.save(path_, output_patches_gt)

        print('Patch Generation done!')
Exemplo n.º 6
0
    def extractPatch_2D5_patchs_no_gt(self):
        """
        Extract 2.5D patches from 3D image; when there is no ground truth provided.
        """

        patch_size_temp = (self.patch_dim[0], self.patch_dim[0],
                           self.patch_dim[0])

        if self.appply_on_batch_files is False:  # single image
            img_name = self.image_name
            img_name = os.path.split(img_name)
            img_name = img_name[-1]
            img_name_split = img_name.split(".")
            self.img_name_ = img_name_split[0]

            self.data = self.to_8bit_(self.data)

            im_patches = extract_3d_patches(self.data,
                                            patch_size_temp,
                                            self.stride,
                                            gt_data=None)

            output_patches = self.make_2D5_patch_from_3d(im_patches)

            path_ = os.path.join(self.generated_patches_folder,
                                 self.img_name_ + '_images_.npy')

            np.save(path_, output_patches)

        else:  # for batch of files
            assert len(os.listdir(
                self.img_source_folder)), 'source folder is empty'

            img_files = os.listdir(self.img_source_folder)
            for images_name in img_files:
                self.image_name = images_name

                # get image extension
                img_name = self.image_name
                img_name = os.path.split(img_name)
                img_name = img_name[-1]
                img_name_split = img_name.split(".")
                self.img_name_ = img_name_split[0]
                img_extension = img_name_split[-1]

                name_ = os.path.join(self.img_source_folder, images_name)
                if img_extension == 'dcm':
                    self.data = read_dicom(name_)
                elif img_extension == 'nii' or img_extension == 'gz' or img_extension == 'nii.gz':
                    self.data = read_nii(name_)
                else:
                    self.data = read_image(name_)

                # convert to 8-bit
                self.data = self.to_8bit_(self.data)

                # extract and save patchs

                im_patches = extract_3d_patches(self.data,
                                                patch_size_temp,
                                                self.stride,
                                                gt_data=None)

                output_patches = self.make_2D5_patch_from_3d(im_patches)

                path_ = os.path.join(self.generated_patches_folder,
                                     self.img_name_ + '_images_.npy')

                np.save(path_, output_patches)

        print('Patch Generation done!')
Exemplo n.º 7
0
    def extractPatch_3D_patchs_mask_gt(self):
        """
        This function it extarcts 3D patches using mask or ground truth or ROI image into consideration
        """

        if self.appply_on_batch_files is False:  # single image
            # get image name and extension
            img_name = self.image_name
            img_name = os.path.split(img_name)
            img_name = img_name[-1]
            img_name_split = img_name.split(".")
            self.img_name_ = img_name_split[0]

            # for gt image
            gt_image_name = self.gt_img_path
            # get image extension
            gt_image_name = os.path.split(gt_image_name)
            gt_image_name = gt_image_name[-1]
            gt_img_name_split = gt_image_name.split(".")
            gt_img_extension = gt_img_name_split[-1]

            name_ = os.path.join(self.gt_img_path)
            if gt_img_extension == 'dcm':
                self.gt_data = read_dicom(name_)
            elif gt_img_extension == 'nii' or gt_img_extension == 'gz' or gt_img_extension == 'nii.gz':
                self.gt_data = read_nii(name_)
            else:
                self.gt_data = read_image(name_)

            # convert to 8-bit

            self.data = self.to_8bit_(self.data)

            # extract patch
            im_patches, gt_patches = extract_3d_patches(self.data,
                                                        self.patch_dim,
                                                        self.stride,
                                                        gt_data=self.gt_data)

            # save patch
            path_ = os.path.join(self.generated_patches_folder,
                                 self.img_name_ + '_images_.npy')

            np.save(path_, im_patches)

            path_ = os.path.join(self.generated_patches_folder,
                                 self.img_name_ + '_gt_.npy')

            np.save(path_, gt_patches)

        else:  # for batch of files
            assert len(os.listdir(self.img_source_folder)) or \
                   len(os.listdir(self.gt_path_source_folder)), 'source folder is empty'
            assert len(os.listdir(self.gt_path_source_folder)) == len(os.listdir(self.img_source_folder)), \
                'number of xml file and image files shoud be same, BUT, found different'

            img_files = os.listdir(self.img_source_folder)
            gt_files = os.listdir(self.gt_path_source_folder)
            for images_name, gt_name in zip(img_files, gt_files):
                self.image_name = images_name
                # get image extension
                img_name = self.image_name
                img_name = os.path.split(img_name)
                img_name = img_name[-1]
                img_name_split = img_name.split(".")
                self.img_name_ = img_name_split[0]
                img_extension = img_name_split[-1]

                name_ = os.path.join(self.img_source_folder, images_name)
                if img_extension == 'dcm':
                    self.data = read_dicom(name_)
                elif img_extension == 'nii' or img_extension == 'gz' or img_extension == 'nii.gz':
                    self.data = read_nii(name_)
                else:
                    self.data = read_image(name_)

                # convert to 8-bit
                self.data = self.to_8bit_(self.data)

                # for gt image
                gt_image_name = gt_name
                # get image extension
                gt_image_name = os.path.split(gt_image_name)
                gt_image_name = gt_image_name[-1]
                gt_img_name_split = gt_image_name.split(".")
                gt_image_name = gt_img_name_split[0]
                gt_img_extension = gt_img_name_split[-1]

                name_ = os.path.join(self.gt_path_source_folder, gt_name)
                if gt_img_extension == 'dcm':
                    self.gt_data = read_dicom(name_)
                elif gt_img_extension == 'nii' or img_extension == 'gz' or img_extension == 'nii.gz':
                    self.gt_data = read_nii(name_)
                else:
                    self.gt_data = read_image(name_)

                # extract 3D patches

                im_patches, gt_patches = extract_3d_patches(
                    self.data,
                    self.patch_dim,
                    self.stride,
                    gt_data=self.gt_data)

                # Save patches
                path_ = os.path.join(self.generated_patches_folder,
                                     self.img_name_ + '_images_.npy')

                np.save(path_, im_patches)

                path_ = os.path.join(self.generated_patches_folder,
                                     self.img_name_ + '_gt_.npy')

                np.save(path_, gt_patches)

        print('Patch Generation done!')
Exemplo n.º 8
0
    def extractPatch_2D_patchs_mask_gt(self):
        if self.appply_on_batch_files is False:  # single image
            # get image extension
            img_name = self.image_name
            img_name = os.path.split(img_name)
            img_name = img_name[-1]
            img_name_split = img_name.split(".")
            self.img_name_ = img_name_split[0]

            # for gt image
            gt_image_name = self.gt_img_path
            # get image extension
            gt_image_name = os.path.split(gt_image_name)
            gt_image_name = gt_image_name[-1]
            gt_img_name_split = gt_image_name.split(".")
            # gt_image_name = img_name_split[0]
            gt_img_extension = gt_img_name_split[-1]

            # Read an image
            name_ = os.path.join(self.gt_img_path)
            if gt_img_extension == 'dcm':
                self.gt_data = read_dicom(name_)
            elif gt_img_extension == 'nii' or gt_img_extension == 'gz' or gt_img_extension == 'nii.gz':
                self.gt_data = read_nii(name_)
            else:
                self.gt_data = read_image(name_)

            Dim = self.data.shape
            if len(Dim) is 2:  # 2D image
                # extract patches
                im_patches, gt_patches = extract_2d_patches(
                    self.data,
                    self.patch_dim[:2],
                    self.stride,
                    gt_data=self.gt_data)

                path_ = os.path.join(self.generated_patches_folder,
                                     self.img_name_ + '_images_.npy')

                np.save(path_, im_patches)

                path_ = os.path.join(self.generated_patches_folder,
                                     self.img_name_ + '_gt_.npy')

                np.save(path_, gt_patches)

            else:  # image is 3D and apply per slice
                P_im = np.empty(
                    shape=[0, self.patch_dim[0], self.patch_dim[1]],
                    dtype='int16')
                P_gt = np.empty(
                    shape=[0, self.patch_dim[0], self.patch_dim[1]],
                    dtype='int16')
                for i in range(Dim[2]):
                    # extract slices per slice
                    im_patches, gt_patches = extract_2d_patches(
                        self.data[:, :, i],
                        self.patch_dim[:2],
                        self.stride,
                        gt_data=self.gt_data[:, :, i])
                    P_im = np.append(P_im, im_patches, axis=0)
                    P_gt = np.append(P_gt, gt_patches, axis=0)

                path_ = os.path.join(self.generated_patches_folder,
                                     self.img_name_ + '_images_.npy')

                np.save(path_, P_im)

                path_ = os.path.join(self.generated_patches_folder,
                                     self.img_name_ + '_gt_.npy')

                np.save(path_, P_gt)

        else:  # for batch of files
            assert len(os.listdir(self.img_source_folder)) or \
                   len(os.listdir(self.gt_path_source_folder)), 'source folder is empty'
            assert len(os.listdir(self.gt_path_source_folder)) == len(os.listdir(self.img_source_folder)), \
                'number of ground truth file and image files shoud be same, BUT, found different!'

            img_files = os.listdir(self.img_source_folder)
            gt_files = os.listdir(self.gt_path_source_folder)
            for images_name, gt_name in zip(img_files, gt_files):
                self.image_name = images_name
                # get image extension
                img_name = self.image_name
                img_name = os.path.split(img_name)
                img_name = img_name[-1]
                img_name_split = img_name.split(".")
                self.img_name_ = img_name_split[0]
                img_extension = img_name_split[-1]

                name_ = os.path.join(self.img_source_folder, images_name)
                if img_extension == 'dcm':
                    self.data = read_dicom(name_)
                elif img_extension == 'nii' or img_extension == 'gz' or img_extension == 'nii.gz':
                    self.data = read_nii(name_)
                else:
                    self.data = read_image(name_)

                # Convert to 8 bit
                self.data = self.to_8bit_(self.data)

                # for gt image
                gt_image_name = gt_name
                # get image extension
                gt_image_name = os.path.split(gt_image_name)
                gt_image_name = gt_image_name[-1]
                gt_img_name_split = gt_image_name.split(".")
                gt_image_name = gt_img_name_split[0]
                gt_img_extension = gt_img_name_split[-1]

                name_ = os.path.join(self.gt_path_source_folder, gt_name)
                if gt_img_extension == 'dcm':
                    self.gt_data = read_dicom(name_)
                elif gt_img_extension == 'nii' or img_extension == 'gz' or img_extension == 'nii.gz':
                    self.gt_data = read_nii(name_)
                else:
                    self.gt_data = read_image(name_)

                Dim = self.data.shape

                # 2D image
                if len(Dim) is 2:
                    im_patches, gt_patches = extract_2d_patches(
                        self.data,
                        self.patch_dim[:2],
                        self.stride,
                        gt_data=self.gt_data)

                    path_ = os.path.join(self.generated_patches_folder,
                                         self.img_name_ + '_images_.npy')

                    np.save(path_, im_patches)

                    path_ = os.path.join(self.generated_patches_folder,
                                         self.img_name_ + '_gt_.npy')

                    np.save(path_, gt_patches)

                else:  # image is 3D and apply per slice
                    P_im = np.empty(
                        shape=[0, self.patch_dim[0], self.patch_dim[1]],
                        dtype='int16')
                    P_gt = np.empty(
                        shape=[0, self.patch_dim[0], self.patch_dim[1]],
                        dtype='int16')
                    for i in range(Dim[2]):
                        # extract slices per slice
                        im_patches, gt_patches = extract_2d_patches(
                            self.data[:, :, i],
                            self.patch_dim[:2],
                            self.stride,
                            gt_data=self.gt_data[:, :, i])
                        P_im = np.append(P_im, im_patches, axis=0)
                        P_gt = np.append(P_gt, gt_patches, axis=0)

                    path_ = os.path.join(self.generated_patches_folder,
                                         self.img_name_ + '_images_.npy')

                    np.save(path_, P_im)

                    path_ = os.path.join(self.generated_patches_folder,
                                         self.img_name_ + '_gt_.npy')

                    np.save(path_, P_gt)

        print('Patch Generation done!')
Exemplo n.º 9
0
    def extractPatch_2D_patchs_no_gt(self):

        if self.appply_on_batch_files is False:  # single image

            # get image name and extension
            img_name = self.image_name
            img_name = os.path.split(img_name)
            img_name = img_name[-1]
            img_name_split = img_name.split(".")
            self.img_name_ = img_name_split[0]

            # check dimenation of the data
            Dim = self.data.shape
            self.data = self.to_8bit_(self.data)

            # 2D image
            if len(Dim) is 2:
                # extract patches
                im_patches = extract_2d_patches(self.data,
                                                self.patch_dim[:2],
                                                self.stride,
                                                gt_data=None)

                # patch name
                path_ = os.path.join(self.generated_patches_folder,
                                     self.img_name_ + '_images_.npy')

                #save as npy file
                np.save(path_, im_patches)
            else:  # image is 3D and apply per slice
                P = np.empty(shape=[0, self.patch_dim[0], self.patch_dim[1]],
                             dtype='int16')
                for i in range(Dim[2]):
                    # extract slices per slice
                    data_ = self.to_8bit_(self.data[:, :, i])
                    im_patches = extract_2d_patches(data_,
                                                    self.patch_dim[:2],
                                                    self.stride,
                                                    gt_data=None)
                    P = np.append(P, im_patches, axis=0)

                path_ = os.path.join(self.generated_patches_folder,
                                     self.img_name_ + '_images_.npy')

                np.save(path_, P)

        else:  # for batch of files
            # check if folder contains file
            assert len(os.listdir(
                self.img_source_folder)), 'source folder is empty'

            # read all  files
            img_files = os.listdir(self.img_source_folder)
            for images_name in img_files:
                self.image_name = images_name

                # get image extension
                img_name = self.image_name
                img_name = os.path.split(img_name)
                img_name = img_name[-1]
                img_name_split = img_name.split(".")
                self.img_name_ = img_name_split[0]
                img_extension = img_name_split[-1]

                name_ = os.path.join(self.img_source_folder, images_name)
                if img_extension == 'dcm':
                    self.data = read_dicom(name_)
                elif img_extension == 'nii' or img_extension == 'gz' or img_extension == 'nii.gz':
                    self.data = read_nii(name_)
                else:
                    self.data = read_image(name_)

                # check dimenation of the data
                Dim = self.data.shape

                # 2D image
                if len(Dim) is 2:
                    im_patches = extract_2d_patches(self.data,
                                                    self.patch_dim[:2],
                                                    self.stride,
                                                    gt_data=None)

                    path_ = os.path.join(self.generated_patches_folder,
                                         self.img_name_ + '_images_.npy')

                    np.save(path_, im_patches)
                else:  # image is 3D and apply per slice
                    P = np.empty(
                        shape=[0, self.patch_dim[0], self.patch_dim[1]],
                        dtype='int16')
                    for i in range(Dim[2]):
                        # extract slices per slice
                        im_patches = extract_2d_patches(self.data[:, :, i],
                                                        self.patch_dim[:2],
                                                        self.stride,
                                                        gt_data=None)
                        P = np.append(P, im_patches, axis=0)

                    path_ = os.path.join(self.generated_patches_folder,
                                         self.img_name_ + '_images_.npy')

                    np.save(path_, P)