#!/usr/bin/env python ''' Created on Aug 31, 2012 @author: masumadmin ''' from PCA import PCA from Utility import read_data if __name__ == '__main__': pca= PCA(3) pca.train(read_data('data/iris_sans_class.arff')) print "ev1: ",pca.eigenvalues[0] print "ev2: ",pca.eigenvalues[1] print "ev3: ",pca.eigenvalues[2] print pca.principal_components print pca.reduce([0.36158967923198376, -0.08226888783524387, 0.8565721047950943, 0.35884392603772075]) print pca.expand([1.0, -7.091680853665849e-10, -1.7341683644644945e-13]) print "OK"
''' Created on Sep 11, 2012 @author: masumadmin ''' from Utility import read_data from LinearRegression import LinearRegression if __name__ == '__main__': lr= LinearRegression() lr.train(read_data('data/linear_in.arff'), read_data('data/linear_out.arff')) y = lr.predict([1,1,1]) print "y1: ", y[0] print "y2: ", y[1]
''' Created on Sep 18, 2012 @author: masumadmin ''' from Utility import read_data from NFoldValidation import NFoldValidation from PCA02 import PCA02 from MYSVGWriter import MYSVGWriter if __name__ == '__main__': matrix, cat_cols, nom_cols = read_data('data/credit-a.arff') num_folds=3 nfold = NFoldValidation(matrix, cat_cols, nom_cols,num_folds) print 'total error in linear regression:', nfold.run() components=5 pca02= PCA02(matrix, cat_cols, nom_cols, components) pca02.train() #plot3.svg svg = MYSVGWriter(500, 500, 0, 0, 100, 100) start_position=4 for i in range(len( pca02.eigenvalues)): svg.rect(start_position, 0, 3, 27*pca02.eigenvalues[i] , 0x008080) start_position+= 4