Exemplo n.º 1
0
    def initModules(self, categories, inputIdx):

        modulesNames = {
            'wordSP', 'wordTM', 'actionSP', 'actionTM', 'generalTM'
        }

        if (self.modulesParams is not None) and\
                (set(self.modulesParams) == modulesNames):
            self.modulesParams['wordSP'].update(self.defaultWordSPParams)
            self.modulesParams['wordTM'].update(self.defaultWordTMParams)
            self.modulesParams['actionSP'].update(self.defaultActionSPParams)
            self.modulesParams['actionTM'].update(self.defaultActionTMParams)

            self.wordSP = SpatialPooler(**self.modulesParams['wordSP'])
            self.wordTM = TemporalMemory(**self.modulesParams['wordTM'])
            self.actionSP = SpatialPooler(**self.modulesParams['actionSP'])
            self.actionTM = TemporalMemory(**self.modulesParams['actionTM'])

            defaultGeneralTMParams = {
                'columnDimensions': (2,
                                     max(self.wordTM.numberOfCells(),
                                         self.actionTM.numberOfCells())),
                'seed':
                self.tmSeed
            }

            self.modulesParams['generalTM'].update(defaultGeneralTMParams)

            self.generalTM = TemporalMemory(**self.modulesParams['generalTM'])
            print("Using external Parameters!")

        else:
            self.wordSP = SpatialPooler(**self.defaultWordSPParams)
            self.wordTM = TemporalMemory(**self.defaultWordTMParams)
            self.actionSP = SpatialPooler(**self.defaultActionSPParams)
            self.actionTM = TemporalMemory(**self.defaultActionTMParams)
            print("External parameters invalid or not found, using"\
                " the default ones")

            defaultGeneralTMParams = {
                'columnDimensions': (2,
                                     max(self.wordTM.numberOfCells(),
                                         self.actionTM.numberOfCells())),
                'seed':
                self.tmSeed
            }

            self.generalTM = TemporalMemory(**defaultGeneralTMParams)

        self.classifier = CLAClassifierCond(steps=[1, 2, 3],
                                            alpha=0.1,
                                            actValueAlpha=0.3,
                                            verbosity=0)

        self.startPointOverlap = CommonOverlap('==',
                                               1,
                                               self.actionTM.columnDimensions,
                                               threshold=0.5)
Exemplo n.º 2
0
    def initModules(self, categories, inputIdx):

        modulesNames = {'wordSP', 'wordTM', 'actionSP', 'actionTM',
            'generalTM'}

        if (self.modulesParams is not None) and\
                (set(self.modulesParams) == modulesNames):
            self.modulesParams['wordSP'].update(self.defaultWordSPParams)
            self.modulesParams['wordTM'].update(self.defaultWordTMParams)
            self.modulesParams['actionSP'].update(self.defaultActionSPParams)
            self.modulesParams['actionTM'].update(self.defaultActionTMParams)

            self.wordSP = SpatialPooler(**self.modulesParams['wordSP'])
            self.wordTM = TemporalMemory(**self.modulesParams['wordTM'])
            self.actionSP = SpatialPooler(**self.modulesParams['actionSP'])
            self.actionTM = TemporalMemory(**self.modulesParams['actionTM'])

            defaultGeneralTMParams = {
                'columnDimensions': (2, max(self.wordTM.numberOfCells(),
                     self.actionTM.numberOfCells())),
                'seed': self.tmSeed
            }

            self.modulesParams['generalTM'].update(defaultGeneralTMParams)

            self.generalTM = TemporalMemory(**self.modulesParams['generalTM'])
            print("Using external Parameters!")

        else:
            self.wordSP = SpatialPooler(**self.defaultWordSPParams)
            self.wordTM = TemporalMemory(**self.defaultWordTMParams)
            self.actionSP = SpatialPooler(**self.defaultActionSPParams)
            self.actionTM = TemporalMemory(**self.defaultActionTMParams)
            print("External parameters invalid or not found, using"\
                " the default ones")

            defaultGeneralTMParams = {
                'columnDimensions': (2, max(self.wordTM.numberOfCells(),
                     self.actionTM.numberOfCells())),
                'seed': self.tmSeed
            }

            self.generalTM = TemporalMemory(**defaultGeneralTMParams)


        self.classifier = CLAClassifierCond(
            steps=[1, 2, 3],
            alpha=0.1,
            actValueAlpha=0.3,
            verbosity=0
        )

        self.startPointOverlap = CommonOverlap('==', 1,
            self.actionTM.columnDimensions, threshold=0.5)
Exemplo n.º 3
0
    def initModules(self, categories, inputIdx):

        modulesNames = {'generalSP', 'generalTM'}

        nWords = len(categories[inputIdx['wordInput']])
        nActions = len(categories[inputIdx['actionInput']])


        inputDimensions = max(
            self.wordEncoder.getWidth(),
            self.actionEncoder.getWidth()
        )

        columnDimensions = (max((nWords + nActions),
            len(self.trainingData)) * 2, )

        defaultGeneralSPParams = {
            'inputDimensions': inputDimensions,
            'columnDimensions': columnDimensions,
            'seed': self.spSeed
        }

        defaultGeneralTMParams = {
            'columnDimensions': columnDimensions,
            'seed': self.tmSeed
        }

        if (self.modulesParams is not None) and\
                (set(self.modulesParams) == modulesNames):
            self.modulesParams['generalSP'].update(defaultGeneralSPParams)
            self.modulesParams['generalTM'].update(defaultGeneralTMParams)

            self.generalSP = SpatialPooler(**self.modulesParams['generalSP'])
            self.generalTM = TemporalMemory(**self.modulesParams['generalTM'])
            print("Using external Parameters!")

        else:
            self.generalSP = SpatialPooler(**defaultGeneralSPParams)
            self.generalTM = TemporalMemory(**defaultGeneralTMParams)
            print("External parameters invalid or not found, using"\
                " the default ones")

        self.classifier = CLAClassifierCond(
            steps=[1, 2],
            alpha=0.1,
            actValueAlpha=0.3,
            verbosity=0
        )
Exemplo n.º 4
0
    def initModules(self, categories, inputIdx):

        modulesNames = {'generalSP', 'generalTM'}

        nWords = len(categories[inputIdx['wordInput']])
        nActions = len(categories[inputIdx['actionInput']])

        inputDimensions = max(
            self.wordEncoder.getWidth(),
            self.actionEncoder.getWidth()
        )

        columnDimensions = (4 * max((nWords + nActions),
                len(self.trainingData)), )

        defaultGeneralSPParams = {
            'inputDimensions': inputDimensions,
            'columnDimensions': columnDimensions,
            'seed': self.spSeed
        }

        defaultGeneralTMParams = {
            'columnDimensions': columnDimensions,
            'seed': self.tmSeed
        }

        if (self.modulesParams is not None) and\
                (set(self.modulesParams) == modulesNames):
            self.modulesParams['generalSP'].update(defaultGeneralSPParams)
            self.modulesParams['generalTM'].update(defaultGeneralTMParams)

            self.generalSP = SpatialPooler(**self.modulesParams['generalSP'])
            self.generalTM = TemporalMemory(**self.modulesParams['generalTM'])

        else:
            self.generalSP = SpatialPooler(**defaultGeneralSPParams)
            self.generalTM = TemporalMemory(**defaultGeneralTMParams)


        self.classifier = CLAClassifierCond(
            steps=[1, 2, 3],
            alpha=0.1,
            actValueAlpha=0.3,
            verbosity=0
        )
Exemplo n.º 5
0
class FeedbackModel(LearningModel):
    """
     Structure:
       WordEncoder -> WordSP -> WordTM
       ActionEncoder -> ActionSP -> ActionTM
       WordTM, ActionTM -> GeneralSP -> GeneralTM

    """
    def __init__(self,
                 wordEncoder,
                 actionEncoder,
                 trainingSet,
                 modulesParams=None):
        """
        @param wordEncoder
        @param actionEncoder
        @param trainingSet: A module containing the trainingData, all of
            its categories and the inputIdx dict that maps each index
            in categories to an input name.
        """

        super(FeedbackModel, self).__init__(wordEncoder, actionEncoder,
                                            trainingSet, modulesParams)

        self.initModules(trainingSet.categories, trainingSet.inputIdx)

        self.structure = {
            'wordInput': 'wordEnc',
            'wordEnc': 'wordSP',
            'wordSP': 'wordTM',
            'wordTM': 'generalSP',
            ###
            'actionInput': 'actionEnc',
            'actionEnc': 'actionSP',
            'actionSP': 'actionTM',
            'actionTM': 'generalSP',
            ###
            'generalSP': 'generalTM',
            'generalTM': None
        }
        self.modules = {
            'generalTM': self.generalTM,
            #'generalSP': self.generalSP,
            'wordTM': self.wordTM,
            'wordSP': self.wordSP,
            'wordEnc': self.wordEncoder,
            'actionTM': self.actionTM,
            'actionSP': self.actionSP,
            'actionEnc': self.actionEncoder
        }

        #self.layer = Layer(self.structure, self.modules, self.classifier)

    def initModules(self, categories, inputIdx):

        modulesNames = {
            'wordSP', 'wordTM', 'actionSP', 'actionTM', 'generalTM'
        }

        if (self.modulesParams is not None) and\
                (set(self.modulesParams) == modulesNames):
            self.modulesParams['wordSP'].update(self.defaultWordSPParams)
            self.modulesParams['wordTM'].update(self.defaultWordTMParams)
            self.modulesParams['actionSP'].update(self.defaultActionSPParams)
            self.modulesParams['actionTM'].update(self.defaultActionTMParams)

            self.wordSP = SpatialPooler(**self.modulesParams['wordSP'])
            self.wordTM = TemporalMemory(**self.modulesParams['wordTM'])
            self.actionSP = SpatialPooler(**self.modulesParams['actionSP'])
            self.actionTM = TemporalMemory(**self.modulesParams['actionTM'])

            defaultGeneralTMParams = {
                'columnDimensions': (2,
                                     max(self.wordTM.numberOfCells(),
                                         self.actionTM.numberOfCells())),
                'seed':
                self.tmSeed
            }

            self.modulesParams['generalTM'].update(defaultGeneralTMParams)

            self.generalTM = TemporalMemory(**self.modulesParams['generalTM'])
            print("Using external Parameters!")

        else:
            self.wordSP = SpatialPooler(**self.defaultWordSPParams)
            self.wordTM = TemporalMemory(**self.defaultWordTMParams)
            self.actionSP = SpatialPooler(**self.defaultActionSPParams)
            self.actionTM = TemporalMemory(**self.defaultActionTMParams)
            print("External parameters invalid or not found, using"\
                " the default ones")

            defaultGeneralTMParams = {
                'columnDimensions': (2,
                                     max(self.wordTM.numberOfCells(),
                                         self.actionTM.numberOfCells())),
                'seed':
                self.tmSeed
            }

            self.generalTM = TemporalMemory(**defaultGeneralTMParams)

        self.classifier = CLAClassifierCond(steps=[1, 2, 3],
                                            alpha=0.1,
                                            actValueAlpha=0.3,
                                            verbosity=0)

        self.startPointOverlap = CommonOverlap('==',
                                               1,
                                               self.actionTM.columnDimensions,
                                               threshold=0.5)

    def processInput(self,
                     sentence,
                     actionSeq,
                     wordSDR=None,
                     actionSDR=None,
                     verbosity=0,
                     learn=True):

        if wordSDR is None:
            wordSDR = numpy.zeros(self.wordSP.getColumnDimensions(),
                                  dtype=numpy.uint8)
        if actionSDR is None:
            actionSDR = numpy.zeros(self.actionSP.getColumnDimensions(),
                                    dtype=numpy.uint8)

        nCellsFromSentence = self.generalTM.columnDimensions[1]
        sentenceActiveCells = set()
        actionSeqActiveCells = set()
        recordNum = 0

        # Feed the words from the sentence to the region 1
        for word in sentence:
            encodedWord = self.wordEncoder.encode(word)
            self.wordSP.compute(encodedWord, learn, wordSDR)
            self.wordTM.compute(set(numpy.where(wordSDR > 0)[0]), learn)
            region1Predicting = (self.wordTM.predictiveCells != set())
            sentenceActiveCells.update(self.wordTM.getActiveCells())

            #print("{} - {}".format(word, ))
            retVal = self.classifier.compute(
                recordNum=recordNum,
                patternNZ=self.wordTM.getActiveCells(),
                classification={
                    'bucketIdx': self.wordEncoder.getBucketIndices(word)[0],
                    'actValue': word
                },
                learn=learn,
                infer=True,
                conditionFunc=lambda x: x.endswith("-event"))

            recordNum += 1

        bestPredictions = []

        for step in retVal:
            if step == 'actualValues':
                continue
            higherProbIndex = numpy.argmax(retVal[step])
            bestPredictions.append(retVal['actualValues'][higherProbIndex])

        if region1Predicting:
            # Feed the sentence to the region 2
            self.generalTM.compute(sentenceActiveCells, learn)

            generalPrediction = set(
                self.generalTM.mapCellsToColumns(
                    self.generalTM.predictiveCells).keys())

            # Normalize predictions so cells stay in the actionTM
            # range.
            generalPrediction = set([
                i - nCellsFromSentence for i in generalPrediction
                if i >= nCellsFromSentence
            ])

#            columnsPrediction = numpy.zeros(
#                self.actionSP.getNumColumns(),
#                dtype=numpy.uint8
#            )
#            columnsPrediction[self.actionTM.mapCellsToColumns(
#                generalPrediction).keys()] = 1
#            self.startPointOverlap.updateCounts(columnsPrediction)
#
#        if len(actionSeq) <= 0:
#
#            assert region1Predicting, "Region 1 is not predicting, consider "\
#                "training the model for a longer time"
#            predictedValues = []
#
#            firstColumns = numpy.where(numpy.bitwise_and(columnsPrediction > 0,
#                self.startPointOverlap.commonElements))
#
#            predictedEnc = numpy.zeros(self.actionEncoder.getWidth(),
#                                         dtype=numpy.uint8)
#            predictedEnc[
#                [self.actionSP._mapColumn(col) for col in firstColumns]] = 1
#            predictedValues.append(self.actionEncoder.decode(predictedEnc))
#
#            print(firstColumns)
#
#            self.actionTM.predictiveCells.update(generalPrediction)
#            self.actionTM.compute(firstColumns, learn)
#
#            predictedColumns = self.actionTM.mapCellsToColumns(
#                self.actionTM.predictiveCells).keys()[0]

        for action in actionSeq:
            encodedAction = self.actionEncoder.encode(action)
            # Use the predicted cells from region 2 to bias the
            # activity of cells in region 1.

            if region1Predicting:
                self.actionTM.predictiveCells.update(generalPrediction)

            self.actionSP.compute(encodedAction, learn, actionSDR)
            self.actionTM.compute(set(numpy.where(actionSDR > 0)[0]), learn)
            actionActiveCells = [
                i + nCellsFromSentence for i in self.actionTM.getActiveCells()
            ]
            actionSeqActiveCells.update(actionActiveCells)
            self.classifier.compute(
                recordNum=recordNum,
                patternNZ=actionActiveCells,
                classification={
                    'bucketIdx':
                    self.wordEncoder.getWidth() +
                    self.actionEncoder.getBucketIndices(action)[0],
                    'actValue':
                    action
                },
                learn=learn,
                infer=True,
                conditionFunc=lambda x: x.endswith("-event"))

            recordNum += 1

        if region1Predicting:
            self.generalTM.compute(actionSeqActiveCells, True)

        if verbosity > 0:
            print('Best Predictions: ' + str(bestPredictions))

        if verbosity > 3:
            print("  |  CLAClassifier best predictions for step1: ")
            top = sorted(retVal[1].tolist(), reverse=True)[:3]

            for prob in top:
                probIndex = retVal[1].tolist().index(prob)
                print(
                    str(retVal['actualValues'][probIndex]) + " - " + str(prob))

            print("  |  CLAClassifier best predictions for step2: ")
            top = sorted(retVal[2].tolist(), reverse=True)[:3]

            for prob in top:
                probIndex = retVal[2].tolist().index(prob)
                print(
                    str(retVal['actualValues'][probIndex]) + " - " + str(prob))

            print("")
            print("---------------------------------------------------")
            print("")

        return bestPredictions

    def train(self, numIterations, trainingData=None, maxTime=-1, verbosity=0):
        """
        @param numIterations
        @param trainingData
        @param maxTime: (default: -1) Training stops if maxTime (in
            minutes) is exceeded. Note that this may interrupt an
            ongoing train ireration. -1 is no time restrictions.
        @param verbosity: (default: 0) How much verbose about the
            process. 0 doesn't print anything.
        """

        startTime = time.time()
        maxTimeReached = False
        recordNum = 0

        if trainingData is None:
            trainingData = self.trainingData

        wordSDR = numpy.zeros(self.wordSP.getColumnDimensions(),
                              dtype=numpy.uint8)
        actionSDR = numpy.zeros(self.actionSP.getColumnDimensions(),
                                dtype=numpy.uint8)
        #generalSDR = numpy.zeros(self.generalSP.getColumnDimensions(),
        #                         dtype=numpy.uint8)
        generalInput = numpy.zeros(self.generalTM.numberOfColumns(),
                                   dtype=numpy.uint8)

        for iteration in xrange(numIterations):
            print("Iteration " + str(iteration))

            for sentence, actionSeq in trainingData:
                self.processInput(sentence, actionSeq, wordSDR, actionSDR)
                self.reset()
                recordNum += 1

                if maxTime > 0:
                    elapsedMinutes = (time.time() - startTime) * (1.0 / 60.0)

                    if elapsedMinutes > maxTime:
                        maxTimeReached = True
                        print("maxTime reached, training stoped at iteration "\
                            "{}!".format(self.iterationsTrained))
                        break

            if maxTimeReached:
                break

            self.iterationsTrained += 1

    def inputSentence(self, sentence, verbosity=1, learn=False):

        return self.processInput(sentence, [],
                                 verbosity=verbosity,
                                 learn=learn)
Exemplo n.º 6
0
class FeedbackModel(LearningModel):
    """
     Structure:
       WordEncoder -> WordSP -> WordTM
       ActionEncoder -> ActionSP -> ActionTM
       WordTM, ActionTM -> GeneralSP -> GeneralTM

    """

    def __init__(self, wordEncoder, actionEncoder, trainingSet,
            modulesParams=None):
        """
        @param wordEncoder
        @param actionEncoder
        @param trainingSet: A module containing the trainingData, all of
            its categories and the inputIdx dict that maps each index
            in categories to an input name.
        """

        super(FeedbackModel, self).__init__(wordEncoder, actionEncoder,
            trainingSet, modulesParams)

        self.initModules(trainingSet.categories, trainingSet.inputIdx)

        self.structure = {
            'wordInput': 'wordEnc',
            'wordEnc': 'wordSP',
            'wordSP': 'wordTM',
            'wordTM': 'generalSP',
            ###
            'actionInput': 'actionEnc',
            'actionEnc': 'actionSP',
            'actionSP': 'actionTM',
            'actionTM': 'generalSP',
            ###
            'generalSP': 'generalTM',
            'generalTM': None
        }
        self.modules = {
            'generalTM': self.generalTM,
            #'generalSP': self.generalSP,
            'wordTM': self.wordTM,
            'wordSP': self.wordSP,
            'wordEnc': self.wordEncoder,
            'actionTM': self.actionTM,
            'actionSP': self.actionSP,
            'actionEnc': self.actionEncoder
        }

        #self.layer = Layer(self.structure, self.modules, self.classifier)

    def initModules(self, categories, inputIdx):

        modulesNames = {'wordSP', 'wordTM', 'actionSP', 'actionTM',
            'generalTM'}

        if (self.modulesParams is not None) and\
                (set(self.modulesParams) == modulesNames):
            self.modulesParams['wordSP'].update(self.defaultWordSPParams)
            self.modulesParams['wordTM'].update(self.defaultWordTMParams)
            self.modulesParams['actionSP'].update(self.defaultActionSPParams)
            self.modulesParams['actionTM'].update(self.defaultActionTMParams)

            self.wordSP = SpatialPooler(**self.modulesParams['wordSP'])
            self.wordTM = TemporalMemory(**self.modulesParams['wordTM'])
            self.actionSP = SpatialPooler(**self.modulesParams['actionSP'])
            self.actionTM = TemporalMemory(**self.modulesParams['actionTM'])

            defaultGeneralTMParams = {
                'columnDimensions': (2, max(self.wordTM.numberOfCells(),
                     self.actionTM.numberOfCells())),
                'seed': self.tmSeed
            }

            self.modulesParams['generalTM'].update(defaultGeneralTMParams)

            self.generalTM = TemporalMemory(**self.modulesParams['generalTM'])
            print("Using external Parameters!")

        else:
            self.wordSP = SpatialPooler(**self.defaultWordSPParams)
            self.wordTM = TemporalMemory(**self.defaultWordTMParams)
            self.actionSP = SpatialPooler(**self.defaultActionSPParams)
            self.actionTM = TemporalMemory(**self.defaultActionTMParams)
            print("External parameters invalid or not found, using"\
                " the default ones")

            defaultGeneralTMParams = {
                'columnDimensions': (2, max(self.wordTM.numberOfCells(),
                     self.actionTM.numberOfCells())),
                'seed': self.tmSeed
            }

            self.generalTM = TemporalMemory(**defaultGeneralTMParams)


        self.classifier = CLAClassifierCond(
            steps=[1, 2, 3],
            alpha=0.1,
            actValueAlpha=0.3,
            verbosity=0
        )

        self.startPointOverlap = CommonOverlap('==', 1,
            self.actionTM.columnDimensions, threshold=0.5)

    def processInput(self, sentence, actionSeq, wordSDR=None,
                     actionSDR=None, verbosity=0, learn=True):

        if wordSDR is None:
            wordSDR = numpy.zeros(self.wordSP.getColumnDimensions(),
                              dtype=numpy.uint8)
        if actionSDR is None:
            actionSDR = numpy.zeros(self.actionSP.getColumnDimensions(),
                              dtype=numpy.uint8)

        nCellsFromSentence = self.generalTM.columnDimensions[1]
        sentenceActiveCells = set()
        actionSeqActiveCells = set()
        recordNum = 0

        # Feed the words from the sentence to the region 1
        for word in sentence:
            encodedWord = self.wordEncoder.encode(word)
            self.wordSP.compute(encodedWord, learn, wordSDR)
            self.wordTM.compute(
                set(numpy.where(wordSDR > 0)[0]),
                learn
            )
            region1Predicting = (self.wordTM.predictiveCells != set())
            sentenceActiveCells.update(self.wordTM.getActiveCells())

            #print("{} - {}".format(word, ))
            retVal = self.classifier.compute(
                recordNum=recordNum,
                patternNZ=self.wordTM.getActiveCells(),
                classification={
                    'bucketIdx': self.wordEncoder.getBucketIndices(word)[0],
                    'actValue': word
                },
                learn=learn,
                infer=True,
                conditionFunc=lambda x: x.endswith("-event")
            )

            recordNum += 1

        bestPredictions = []

        for step in retVal:
            if step == 'actualValues':
                continue
            higherProbIndex = numpy.argmax(retVal[step])
            bestPredictions.append(
                retVal['actualValues'][higherProbIndex]
            )

        if region1Predicting:
            # Feed the sentence to the region 2
            self.generalTM.compute(sentenceActiveCells, learn)

            generalPrediction = set(self.generalTM.mapCellsToColumns(
                self.generalTM.predictiveCells
            ).keys())

            # Normalize predictions so cells stay in the actionTM
            # range.
            generalPrediction = set([i - nCellsFromSentence
                                     for i in generalPrediction
                                     if i >= nCellsFromSentence])

#            columnsPrediction = numpy.zeros(
#                self.actionSP.getNumColumns(),
#                dtype=numpy.uint8
#            )
#            columnsPrediction[self.actionTM.mapCellsToColumns(
#                generalPrediction).keys()] = 1
#            self.startPointOverlap.updateCounts(columnsPrediction)
#
#        if len(actionSeq) <= 0:
#
#            assert region1Predicting, "Region 1 is not predicting, consider "\
#                "training the model for a longer time"
#            predictedValues = []
#
#            firstColumns = numpy.where(numpy.bitwise_and(columnsPrediction > 0,
#                self.startPointOverlap.commonElements))
#
#            predictedEnc = numpy.zeros(self.actionEncoder.getWidth(),
#                                         dtype=numpy.uint8)
#            predictedEnc[
#                [self.actionSP._mapColumn(col) for col in firstColumns]] = 1
#            predictedValues.append(self.actionEncoder.decode(predictedEnc))
#
#            print(firstColumns)
#
#            self.actionTM.predictiveCells.update(generalPrediction)
#            self.actionTM.compute(firstColumns, learn)
#
#            predictedColumns = self.actionTM.mapCellsToColumns(
#                self.actionTM.predictiveCells).keys()[0]

        for action in actionSeq:
            encodedAction = self.actionEncoder.encode(action)
            # Use the predicted cells from region 2 to bias the
            # activity of cells in region 1.

            if region1Predicting:
                self.actionTM.predictiveCells.update(generalPrediction)

            self.actionSP.compute(encodedAction, learn, actionSDR)
            self.actionTM.compute(
                set(numpy.where(actionSDR > 0)[0]),
                learn
            )
            actionActiveCells = [i + nCellsFromSentence for i in
                                 self.actionTM.getActiveCells()]
            actionSeqActiveCells.update(actionActiveCells)
            self.classifier.compute(
                recordNum=recordNum,
                patternNZ=actionActiveCells,
                classification={
                    'bucketIdx': self.wordEncoder.getWidth() +
                        self.actionEncoder.getBucketIndices(action)[0],
                    'actValue': action
                },
                learn=learn,
                infer=True,
                conditionFunc=lambda x: x.endswith("-event")
            )

            recordNum += 1

        if region1Predicting:
            self.generalTM.compute(
                actionSeqActiveCells,
                True
            )

        if verbosity > 0:
            print('Best Predictions: ' + str(bestPredictions))

        if verbosity > 3:
            print("  |  CLAClassifier best predictions for step1: ")
            top = sorted(retVal[1].tolist(), reverse=True)[:3]

            for prob in top:
                probIndex = retVal[1].tolist().index(prob)
                print(str(retVal['actualValues'][probIndex]) +
                      " - " + str(prob))

            print("  |  CLAClassifier best predictions for step2: ")
            top = sorted(retVal[2].tolist(), reverse=True)[:3]

            for prob in top:
                probIndex = retVal[2].tolist().index(prob)
                print(str(retVal['actualValues'][probIndex]) +
                      " - " + str(prob))

            print("")
            print("---------------------------------------------------")
            print("")

        return bestPredictions

    def train(self, numIterations, trainingData=None,
              maxTime=-1, verbosity=0):
        """
        @param numIterations
        @param trainingData
        @param maxTime: (default: -1) Training stops if maxTime (in
            minutes) is exceeded. Note that this may interrupt an
            ongoing train ireration. -1 is no time restrictions.
        @param verbosity: (default: 0) How much verbose about the
            process. 0 doesn't print anything.
        """

        startTime = time.time()
        maxTimeReached = False
        recordNum = 0

        if trainingData is None:
            trainingData = self.trainingData

        wordSDR = numpy.zeros(self.wordSP.getColumnDimensions(),
                              dtype=numpy.uint8)
        actionSDR = numpy.zeros(self.actionSP.getColumnDimensions(),
                                dtype=numpy.uint8)
        #generalSDR = numpy.zeros(self.generalSP.getColumnDimensions(),
        #                         dtype=numpy.uint8)
        generalInput = numpy.zeros(self.generalTM.numberOfColumns(),
                                   dtype=numpy.uint8)

        for iteration in xrange(numIterations):
            print("Iteration " + str(iteration))

            for sentence, actionSeq in trainingData:
                self.processInput(sentence, actionSeq, wordSDR, actionSDR)
                self.reset()
                recordNum += 1

                if maxTime > 0:
                    elapsedMinutes = (time.time() - startTime) * (1.0 / 60.0)

                    if elapsedMinutes > maxTime:
                        maxTimeReached = True
                        print("maxTime reached, training stoped at iteration "\
                            "{}!".format(self.iterationsTrained))
                        break

            if maxTimeReached:
                break

            self.iterationsTrained += 1

    def inputSentence(self, sentence, verbosity=1, learn=False):

        return self.processInput(sentence, [], verbosity=verbosity, learn=learn)
Exemplo n.º 7
0
    def initModules(self, categories, inputIdx):

        modulesNames = {'wordSP', 'wordTM', 'actionSP', 'actionTM',
            'generalSP', 'generalTM'}

        if (self.modulesParams is not None) and\
                (set(self.modulesParams) == modulesNames):
            self.modulesParams['wordSP'].update(self.defaultWordSPParams)
            self.modulesParams['wordTM'].update(self.defaultWordTMParams)
            self.modulesParams['actionSP'].update(self.defaultActionSPParams)
            self.modulesParams['actionTM'].update(self.defaultActionTMParams)

            self.wordSP = SpatialPooler(**self.modulesParams['wordSP'])
            self.wordTM = TemporalMemory(**self.modulesParams['wordTM'])
            self.actionSP = SpatialPooler(**self.modulesParams['actionSP'])
            self.actionTM = TemporalMemory(**self.modulesParams['actionTM'])

            generalInputDimensions = max(
                self.wordTM.numberOfCells() + 1,
                self.actionTM.numberOfCells() + 1
            )
            generalColumnDimensions = (len(self.trainingData) * 3,)

            defaultGeneralSPParams = {
                'inputDimensions': generalInputDimensions,
                'columnDimensions': generalColumnDimensions,
                'seed': self.spSeed
            }
            defaultGeneralTMParams = {
                'columnDimensions': generalColumnDimensions,
                'seed': self.tmSeed
            }

            self.modulesParams['generalSP'].update(defaultGeneralSPParams)
            self.modulesParams['generalTM'].update(defaultGeneralTMParams)

            self.generalSP = SpatialPooler(**self.modulesParams['generalSP'])
            self.generalTM = TemporalMemory(**self.modulesParams['generalTM'])
            print("Using external Parameters!")

        else:
            self.wordSP = SpatialPooler(**self.defaultWordSPParams)
            self.wordTM = TemporalMemory(**self.defaultWordTMParams)
            self.actionSP = SpatialPooler(**self.defaultActionSPParams)
            self.actionTM = TemporalMemory(**self.defaultActionTMParams)
            print("External parameters invalid or not found, using"\
                " the default ones")

            generalInputDimensions = max(
                self.wordTM.numberOfCells() + 1,
                self.actionTM.numberOfCells() + 1
            )
            generalColumnDimensions = (len(self.trainingData) * 3,)

            defaultGeneralSPParams = {
                'inputDimensions': generalInputDimensions,
                'columnDimensions': generalColumnDimensions,
                'seed': self.spSeed
            }
            defaultGeneralTMParams = {
                'columnDimensions': generalColumnDimensions,
                'seed': self.tmSeed
            }

            self.generalSP = SpatialPooler(**defaultGeneralSPParams)
            self.generalTM = TemporalMemory(**defaultGeneralTMParams)

        self.classifier = CLAClassifierCond(
            steps=[1, 2, 3],
            alpha=0.1,
            actValueAlpha=0.3,
            verbosity=0
        )
Exemplo n.º 8
0
                   maxBoost=3,
                   seed=42,
                   spVerbosity=0)

tm = TemporalMemory(
    columnDimensions=sp.getColumnDimensions(),
    initialPermanence=0.4,
    connectedPermanence=0.5,
    minThreshold=4,
    maxNewSynapseCount=4,
    permanenceDecrement=0.05,
    permanenceIncrement=0.05,
    activationThreshold=4,
)

cla = CLAClassifierCond((1, 2))

spIn = numpy.zeros(sp.getNumInputs(), dtype=numpy.uint8)
spOut = numpy.zeros(sp.getNumColumns(), dtype=numpy.uint8)

trainingData = [['a', 'b', 'c'], ['a', 'c', 'b']]
trainingData2 = [(['b', 'c', 'a'], ['z', 'x', 'y'])]

recordNum = 0

for i in xrange(20):

    #    recordNum = 0
    #    for dataList in trainingData:
    #        print("----------dataList = {}----------".format(dataList))
    #
Exemplo n.º 9
0
class JoinedInputsModel(LearningModel):
    """
    Joins all the words in the sentence in one SDR and tries to predict
    the sequence of actions.
    Structure:
       WordEncoder, ActionEncoder -> GeneralSP -> GeneralTM
    """

    def __init__(self, wordEncoder, actionEncoder, trainingSet,
            modulesParams=None):
        """
        @param wordEncoder
        @param actionEncoder
        @param dataSet: A module containing the trainingData, all of
            its categories and the inputIdx dict that maps each index
            in categories to an input name.
        """

        super(JoinedInputsModel, self).__init__(wordEncoder, actionEncoder,
            trainingSet, modulesParams)

        self.buckets = dict()
        self.iterationsTrained = 0

        self.initModules(trainingSet.categories, trainingSet.inputIdx)

        self.structure = {
            'wordInput': 'wordEnc',
            'wordEnc': 'generalSP',
            ###
            'actionInput': 'actionEnc',
            'actionEnc': 'generalSP',
            ###
            'generalSP': 'generalTM',
            'generalTM': None
        }
        self.modules = {
            'generalTM': self.generalTM,
            'generalSP': self.generalSP,
            'wordEnc': self.wordEncoder,
            'actionEnc': self.actionEncoder
        }

        self.layer = Layer(self.structure, self.modules, self.classifier)

    def initModules(self, categories, inputIdx):

        modulesNames = {'generalSP', 'generalTM'}

        nWords = len(categories[inputIdx['wordInput']])
        nActions = len(categories[inputIdx['actionInput']])


        inputDimensions = max(
            self.wordEncoder.getWidth(),
            self.actionEncoder.getWidth()
        )

        columnDimensions = (max((nWords + nActions),
            len(self.trainingData)) * 2, )

        defaultGeneralSPParams = {
            'inputDimensions': inputDimensions,
            'columnDimensions': columnDimensions,
            'seed': self.spSeed
        }

        defaultGeneralTMParams = {
            'columnDimensions': columnDimensions,
            'seed': self.tmSeed
        }

        if (self.modulesParams is not None) and\
                (set(self.modulesParams) == modulesNames):
            self.modulesParams['generalSP'].update(defaultGeneralSPParams)
            self.modulesParams['generalTM'].update(defaultGeneralTMParams)

            self.generalSP = SpatialPooler(**self.modulesParams['generalSP'])
            self.generalTM = TemporalMemory(**self.modulesParams['generalTM'])
            print("Using external Parameters!")

        else:
            self.generalSP = SpatialPooler(**defaultGeneralSPParams)
            self.generalTM = TemporalMemory(**defaultGeneralTMParams)
            print("External parameters invalid or not found, using"\
                " the default ones")

        self.classifier = CLAClassifierCond(
            steps=[1, 2],
            alpha=0.1,
            actValueAlpha=0.3,
            verbosity=0
        )

    def train(self, numIterations, trainingData=None, maxTime=-1, verbosity=0,
            learn=True):

        startTime = time.time()
        maxTimeReached = False

        if trainingData is None:
            trainingData = self.trainingData

        for iteration in xrange(numIterations):
            if verbosity > 0:
                print("Iteration "  + str(iteration))

            recordNum = 0

            for sentence, actionSeq in trainingData:
                self.inputSentence(sentence, verbosity, learn)
                recordNum += 1

                for action in actionSeq:
                    inputData = ('actionInput', action)
                    self.processInput(inputData, recordNum, verbosity, learn)
                    recordNum += 1

                self.reset()

                if (maxTime > 0):
                    elapsedMinutes = (time.time() - startTime) * (1.0 / 60.0)

                    if (elapsedMinutes > maxTime):
                        maxTimeReached = True
                        print("maxTime reached, training stoped at iteration "\
                            "{}!".format(self.iterationsTrained))
                        break

            if maxTimeReached:
                break

            self.iterationsTrained += 1

    def processInput(self, inputData, recordNum, verbosity=0, learn=False):

        inputName = inputData[0]
        actualValue = inputData[1]

        if verbosity > 1:
            print("===== " + inputName + ": " + str(actualValue) + " =====")

        encodedValue = numpy.zeros(
            self.generalSP.getInputDimensions(),
            dtype=numpy.uint8
        )

        if inputName == 'wordInput':
            for word in actualValue:
                encodedValue[self.wordEncoder.getBucketIndices(word)] = 1

            actualValue = ' '.join(actualValue)

        elif(inputName == 'actionInput'):
            aux = self.actionEncoder.encode(actualValue)
            encodedValue[numpy.where(aux > 1)] = 1

        if actualValue not in self.buckets:
            self.buckets[actualValue] = len(self.buckets)

        bucketIndex = self.buckets[actualValue]

        if verbosity > 1:
            print("Encoded Value: {0}\n"\
                "Bucket Index: {1}\n".format(encodedValue, bucketIndex))

        spOutput = numpy.zeros(self.generalSP.getColumnDimensions(),
                    dtype=numpy.uint8)
        self.generalSP.compute(encodedValue, learn, spOutput)

        tmInput = numpy.where(spOutput > 0)[0]
        self.generalTM.compute(set(tmInput), learn)

        retVal = self.classifier.compute(
                recordNum=recordNum,
                patternNZ=self.generalTM.activeCells,
                classification={
                    'bucketIdx': self.buckets[actualValue],
                    'actValue': actualValue
                },
                learn=learn,
                infer=True,
                conditionFunc=lambda x: x.endswith("-event")
            )

        bestPredictions = []

        for step in retVal:
            if step == 'actualValues':
                continue

            higherProbIndex = numpy.argmax(retVal[step])
            bestPredictions.append(
                retVal['actualValues'][higherProbIndex]
            )

        if verbosity > 2 :
            print("  |  CLAClassifier best predictions for step1: ")
            top = sorted(retVal[1].tolist(), reverse=True)[:3]

            for prob in top:
                probIndex = retVal[1].tolist().index(prob)
                print(str(retVal['actualValues'][probIndex]) +
                    " - " + str(prob))

            print("  |  CLAClassifier best predictions for step2: ")
            top = sorted(retVal[2].tolist(), reverse=True)[:3]

            for prob in top:
                probIndex = retVal[2].tolist().index(prob)
                print(str(retVal['actualValues'][probIndex]) +
                    " - " + str(prob))

            print("")
            print("---------------------------------------------------")
            print("")

        return bestPredictions

    def inputSentence(self, sentence, verbosity=0, learn=False):

        inputData = ('wordInput', sentence)
        bestPredictions = self.processInput(inputData, 0, verbosity, learn)

        if verbosity > 1:
            print('Best Predictions: ' + str(bestPredictions))

        return bestPredictions