Exemplo n.º 1
0
 def update(self):
     try:
         sessions_df = utils.get_sessions(self.Animal.folder)
         lines = sessions_df['task'].tolist()
         lines = '\n'.join(lines)
         model = PandasModel(sessions_df[['date','time','task']])
         self.Table.setModel(model)
     except ValueError:
         pass
Exemplo n.º 2
0
def reaches_during_delay_across_sess(animal_fd_path, tasks_names,
                                     init_day_idx):

    SessionsDf = utils.get_sessions(animal_fd_path)
    animal_meta = pd.read_csv(animal_fd_path / 'animal_meta.csv')

    # Filter sessions to the ones of the task we want to see
    FilteredSessionsDf = pd.concat(
        [SessionsDf.groupby('task').get_group(name) for name in tasks_names])
    log_paths = [
        Path(path) / 'arduino_log.txt' for path in FilteredSessionsDf['path']
    ]

    fig, axes = plt.subplots(ncols=2, figsize=[6, 4], sharey=True, sharex=True)
    colors = sns.color_palette(palette='turbo', n_colors=len(log_paths))

    for j, log_path in enumerate(log_paths[init_day_idx:]):

        LogDf = bhv.get_LogDf_from_path(log_path)

        # ADD SINGLE GO_CUE_EVENT
        LogDf = bhv.add_go_cue_LogDf(LogDf)
        TrialSpans = bhv.get_spans_from_names(LogDf, "TRIAL_ENTRY_STATE",
                                              "ITI_STATE")

        TrialDfs = []
        for i, row in tqdm(TrialSpans.iterrows(), position=0, leave=True):
            TrialDfs.append(bhv.time_slice(LogDf, row['t_on'], row['t_off']))

        metrics = (met.get_start, met.get_stop, met.get_correct_side,
                   met.get_outcome, met.get_interval_category,
                   met.get_chosen_side, met.has_reach_left,
                   met.has_reach_right)
        SessionDf = bhv.parse_trials(TrialDfs, metrics)

        CDF_of_reaches_during_delay(SessionDf,
                                    TrialDfs,
                                    axes=axes,
                                    color=colors[j],
                                    alpha=0.75,
                                    label='day ' + str(j + 1))

    fig.suptitle('CDF of first reach split on trial type \n' +
                 animal_meta['value'][5] + '-' + animal_meta['value'][0])

    axes[0].set_ylabel('Fraction of trials')
    axes[0].legend(frameon=False, fontsize='x-small')
    fig.tight_layout()

    return axes
Exemplo n.º 3
0
    def load_last_vars(self):
        """ try to get arduino variables from last run for the task 
        only loads, does not send! """
        config = self.parent().config

        folder = Path(
            config['paths']['animals_folder']) / config['current']['animal']
        SessionsDf = utils.get_sessions(folder)

        try:
            previous_sessions = SessionsDf.groupby('task').get_group(
                config['current']['task'])
        except KeyError:
            utils.printer(
                "trying to use last vars, but animal has not been run on this task before.",
                'error')
            return None

        # to allow for this functionalty while task is running
        if self.parent().parent().running:
            ix = -2
        else:
            ix = -1

        try:
            prev_session_path = Path(previous_sessions.iloc[ix]['path'])
            prev_vars_path = prev_session_path / config['current'][
                'task'] / "Arduino" / "src" / "interface_variables.h"
            if prev_vars_path.exists():
                prev_vars = utils.parse_arduino_vars(prev_vars_path)
                return prev_vars
            else:
                utils.printer(
                    "found variables from last session, but can't set them",
                    "error")
                return None
        except IndexError:
            # thrown when there is no previous session
            return None
Exemplo n.º 4
0
def grasp_dur_across_sess(animal_fd_path, tasks_names):

    SessionsDf = utils.get_sessions(animal_fd_path)
    animal_meta = pd.read_csv(animal_fd_path / 'animal_meta.csv')

    # Filter sessions to the ones of the task we want to see
    FilteredSessionsDf = pd.concat(
        [SessionsDf.groupby('task').get_group(name) for name in tasks_names])
    log_paths = [
        Path(path) / 'arduino_log.txt' for path in FilteredSessionsDf['path']
    ]

    fig, axes = plt.subplots(ncols=2, figsize=[8, 4], sharey=True, sharex=True)
    sides = ['LEFT', 'RIGHT']

    Df = []
    # gather data
    for day, log_path in enumerate(log_paths):

        LogDf = bhv.get_LogDf_from_path(log_path)
        TrialSpans = bhv.get_spans_from_names(LogDf, "TRIAL_ENTRY_STATE",
                                              "ITI_STATE")

        TrialDfs = []
        for i, row in tqdm(TrialSpans.iterrows(), position=0, leave=True):
            TrialDfs.append(bhv.time_slice(LogDf, row['t_on'], row['t_off']))

        metrics = (met.get_start, met.get_stop, met.get_correct_side,
                   met.get_outcome, met.get_interval_category,
                   met.get_chosen_side, met.has_reach_left,
                   met.has_reach_right)
        SessionDf = bhv.parse_trials(TrialDfs, metrics)

        for side in sides:
            event_on, event_off = 'REACH_' + str(side) + '_ON', 'REACH_' + str(
                side) + '_OFF'  # event names

            # reaches
            grasp_spansDf = bhv.get_spans_from_names(LogDf, event_on,
                                                     event_off)
            reach_durs = np.array(grasp_spansDf['dt'].values, dtype=object)
            Df.append([reach_durs], columns=['durs'], ignore_index=True)

            # grasps
            choiceDf = bhv.groupby_dict(
                SessionDf, dict(has_choice=True, chosen_side=side.lower()))
            grasp_durs = choiceDf[~choiceDf['grasp_dur'].isna(
            )]['grasp_dur'].values  # filter out Nans
            Df.append([grasp_durs, 'g', side],
                      columns=['durs', 'type', 'side'],
                      ignore_index=True)

        sns.violinplot(data=Df[Df['type'] == 'r'],
                       x=day,
                       y='durs',
                       hue='side',
                       split=True,
                       cut=0,
                       legend='reaches')
        sns.violinplot(data=Df[Df['type'] == 'g'],
                       x=day,
                       y='durs',
                       hue='side',
                       split=True,
                       cut=0,
                       legend='grasps')

    fig.suptitle('CDF of first reach split on trial type \n' +
                 animal_meta['value'][5] + '-' + animal_meta['value'][0])
    axes.legend

    return axes
Exemplo n.º 5
0
Nicknames = ['Lifeguard', 'Lumberjack', 'Teacher', 'Plumber', 'Poolboy', 'Policeman', 'Therapist']
# Nicknames = ['Therapist']
task_name = 'learn_to_choose_v2'

# get animals by Nickname
Animals_folder = Path("/media/georg/htcondor/shared-paton/georg/Animals_reaching")
Animals = utils.get_Animals(Animals_folder)

Animals = [a for a in Animals if a.Nickname in Nicknames]

overwrite = False

for i, Animal in enumerate(Animals):
    utils.printer("processing animal %s" % Animal, 'msg')
    SessionsDf = utils.get_sessions(Animal.folder).groupby('task').get_group(task_name)
    SessionsDf = SessionsDf.reset_index()

    for i, row in SessionsDf.iterrows():
        session_folder = Path(row['path'])
        Session = utils.Session(session_folder)
        
        # session overview
        if 0:
            outpath = Animal.folder / 'plots' / 'session_overviews' / ('session_overview_%s_%s_day_%s.png' % (Session.date, Session.time, Session.day))
            if not outpath.exists() or overwrite:
                plot_session_overview(session_folder, save=outpath)

        # init histograms
        if 1:
            outpath = Animal.folder / 'plots' / 'init_histograms' / ('init_histogram_%s_%s_day_%s.png' % (Session.date, Session.time, Session.day))
Exemplo n.º 6
0
def plot_bias_over_sessions(Animal_folder, task_name, save=None):
    Animal = utils.Animal(Animal_folder)

    # get BiasDfs
    SessionsDf = utils.get_sessions(Animal.folder).groupby('task').get_group(task_name)
    BiasDfs = []

    autodeliver = []
    p_lefts = []

    for i, row in SessionsDf.iterrows():
        session_folder = Path(row['path'])
        LogDf = bhv.get_LogDf_from_path(session_folder / "arduino_log.txt")
        LogDf['min'] = LogDf['t'] / 60000

        # one sesion bias
        BiasDf = LogDf.groupby('var').get_group('bias')
        t_min = BiasDf['t'].values[0]
        t_max = BiasDf['t'].values[-1]
        BiasDf['t_rel'] = (BiasDf['t'].values - t_min)/t_max

        BiasDfs.append(BiasDf)

        # get autodeliver value for session
        fname = session_folder / task_name / 'Arduino' / 'src' / 'interface_variables.h'
        value = utils.parse_arduino_vars(fname).groupby('name').get_group('autodeliver_rewards').iloc[0]['value']
        autodeliver.append(value)

        # get static bias corr if possible
        fname = session_folder / task_name / 'Arduino' / 'src' / 'interface_variables.h'
        try:
            p_left = utils.parse_arduino_vars(fname).groupby('name').get_group('p_left').iloc[0]['value']
        except KeyError:
            p_left = 0.5
        p_lefts.append(p_left)

    fig, axes = plt.subplots(nrows=2, sharex=True, gridspec_kw=dict(height_ratios=(0.1,1)))
    w = 0.5
    
    axes[0].set_ylabel('auto\nrewards')
    axes[0].set_xticks([])
    axes[0].set_yticks([])

    for i in range(SessionsDf.shape[0]):
        BiasDf = BiasDfs[i]
        tvec = np.linspace(i-w/2,i+w/2,BiasDf.shape[0])
        axes[1].plot(tvec, BiasDf['value'])
        axes[1].plot(i, np.average(BiasDf['value']),'o',color='k')
        axes[1].set_ylim(-0.1,1.1)
        if autodeliver[i] == 1:
            axes[0].plot(i,0,'o',color='black')
        # axes[0].text(i,0.03,str(p_lefts[i]),ha='center')

    axes[1].axhline(0.5,linestyle=':',lw=1,alpha=0.5,color='k')
    axes[1].set_xticks(range(SessionsDf.shape[0]))
    axes[1].set_xticklabels(SessionsDf['date'],rotation=45, ha="right")
    axes[1].set_xlabel('date')
    axes[1].set_ylabel('bias\n1=right')

    title = Animal.Nickname + ' - bias over sessions'
    axes[0].set_title(title)
    sns.despine(fig)
    fig.tight_layout()
    fig.subplots_adjust(hspace=0.1)

    if save is not None:
        os.makedirs(save.parent, exist_ok=True)
        plt.savefig(save, dpi=600)
        plt.close(fig)

# %%
# Animal_folder = Path("/media/georg/htcondor/shared-paton/georg/Animals_reaching/JJP-02911_Lumberjack")
# task_name = 'learn_to_choose_v2'
# plot_bias_over_sessions(Animal_folder, task_name=task_name, save=None)
Exemplo n.º 7
0
 ########  ##     ## ##    ## 
 ##     ## ##     ## ###   ## 
 ##     ## ##     ## ####  ## 
 ########  ##     ## ## ## ## 
 ##   ##   ##     ## ##  #### 
 ##    ##  ##     ## ##   ### 
 ##     ##  #######  ##    ## 
 
"""

# Borges = Path("/media/georg/htcondor/shared-paton/georg/Animals_reaching/JJP-01977")
Marquez = Path("/media/georg/htcondor/shared-paton/georg/Animals_reaching/JJP-01975") # TODO TO BE CHANGED BY PACO

task_name = 'learn_to_fixate_discrete_v1'

SessionsDf = utils.get_sessions(Marquez)
SessionsDf = SessionsDf.groupby('task').get_group('learn_to_fixate_discrete_v1')

log_path = Path(SessionsDf.iloc[-1]['path']) / 'arduino_log.txt'

LogDf = bhv.get_LogDf_from_path(log_path)
animal = utils.Animal(log_path.parent)
date = log_path.parent.stem.split('_')[0]

#  slice into trials
def get_SessionDf(LogDf, metrics, trial_entry_event="TRIAL_AVAILABLE_STATE", trial_exit_event="ITI_STATE"):

    TrialSpans = bhv.get_spans_from_names(LogDf, trial_entry_event, trial_exit_event)

    TrialDfs = []
    for i, row in tqdm(TrialSpans.iterrows(),position=0, leave=True):
Exemplo n.º 8
0
animals = [ 'JJP-02909_Lifeguard','JJP-02911_Lumberjack','JJP-02912_Teacher','JJP-02994_Plumber',
            'JJP-02995_Poolboy','JJP-02996_Policeman','JJP-02997_Therapist']

animals_dir_plots = animals_dir / 'plots'
os.makedirs(animals_dir_plots, exist_ok=True)

no_sessions_to_analyze = 10

n_rews_collected = np.zeros((len(animals), no_sessions_to_analyze))
n_anticipatory = np.zeros((len(animals), no_sessions_to_analyze))
no_trials = np.zeros((len(animals), no_sessions_to_analyze))
session_length = np.zeros((len(animals), no_sessions_to_analyze)) 

for j, animal in enumerate(animals):

    SessionsDf = utils.get_sessions(animals_dir / animal)
    
    # Filter sessions to the ones of the task we want to see
    task_name = ['learn_to_choose_v2']
    FilteredSessionsDf = pd.concat([SessionsDf.groupby('task').get_group(name) for name in task_name])
    log_paths = [Path(path)/'arduino_log.txt' for path in FilteredSessionsDf['path']]

    for k,log_path in enumerate(tqdm(log_paths[:no_sessions_to_analyze], position=0, leave=True, desc=animal)):
        
        LogDf = bhv.get_LogDf_from_path(log_path)

        # Getting metrics
        TrialSpans = bhv.get_spans_from_names(LogDf, "TRIAL_ENTRY_STATE", "ITI_STATE")

        TrialDfs = []
        for i, row in TrialSpans.iterrows():
Exemplo n.º 9
0
folders = dict(
        Lifeguard="/media/georg/htcondor/shared-paton/georg/Animals_reaching/JJP-02909",
        Lumberjack="/media/georg/htcondor/shared-paton/georg/Animals_reaching/JJP-02911",
        Teacher="/media/georg/htcondor/shared-paton/georg/Animals_reaching/JJP-02912",
        Plumber="/media/georg/htcondor/shared-paton/georg/Animals_reaching/JJP-02994",
        Poolboy="/media/georg/htcondor/shared-paton/georg/Animals_reaching/JJP-02995",
        Policeman="/media/georg/htcondor/shared-paton/georg/Animals_reaching/JJP-02996",
        Therapist="/media/georg/htcondor/shared-paton/georg/Animals_reaching/JJP-02997")

# %%

for animal, folder in folders.items():
    print("processing %s" % animal)
    folder = Path(folder)
    Animal = utils.Animal(folder)
    SessionsDf = utils.get_sessions(Animal.folder).groupby('task').get_group('learn_to_choose_v2')
    SessionsDf = SessionsDf.reset_index()

    for day, row in SessionsDf.iterrows():
        print(day)
        folder = Path(SessionsDf.loc[day,'path'])
        LogDf = bhv.get_LogDf_from_path(folder / "arduino_log.txt")
        LogDf['min'] = LogDf['t'] / 60000


        # check each reach
        ReachesLeftDf = bhv.get_spans_from_names(LogDf, "REACH_LEFT_ON", "REACH_LEFT_OFF")

        # drop invalid
        min_th = 5
        max_th = 2000
Exemplo n.º 10
0
import behav_plotters_reach as bhv_plt_reach

 
"""
 #       #######    #    ######  ### #     #  #####
 #       #     #   # #   #     #  #  ##    # #     #
 #       #     #  #   #  #     #  #  # #   # #
 #       #     # #     # #     #  #  #  #  # #  ####
 #       #     # ####### #     #  #  #   # # #     #
 #       #     # #     # #     #  #  #    ## #     #
 ####### ####### #     # ######  ### #     #  #####

"""
animal_fd_path = sys.argv[1]

fd_path = Path(utils.get_sessions(animal_fd_path).iloc[-1]['path']) # Get last session fd_path

# Arduino data
log_path = fd_path / 'arduino_log.txt'
LogDf = bhv.get_LogDf_from_path(log_path)

# LoadCell data
LoadCellDf = bhv.parse_bonsai_LoadCellData(fd_path / 'bonsai_LoadCellData.csv')

# Parse sync events/triggers
lc_sync_event = sync.parse_harp_sync(fd_path / 'bonsai_harp_sync.csv')
arduino_sync_event = sync.get_arduino_sync(fd_path / 'arduino_log.txt')

# Get the values out of them
Sync = sync.Syncer()
Sync.data['arduino'] = arduino_sync_event['t'].values
Exemplo n.º 11
0
import os
from Utils import utils

# %%
folder = Path("/home/georg/data/grasping_animals/")
folder = Path("/media/georg/htcondor/shared-paton/georg/Animals_reaching")
Animals = utils.get_Animals(folder)

# %%

# lifeguard
folder = "/media/georg/htcondor/shared-paton/georg/Animals_reaching/JJP-02909"
Animal = utils.Animal(folder)

day = 0
folder = Path(utils.get_sessions(Animal.folder).path[day])

LogDf = bhv.get_LogDf_from_path(folder / "arduino_log.txt")
LogDf['min'] = LogDf['t'] / 60000

# %% check each reach
ReachesDf = bhv.get_spans_from_names(LogDf, "REACH_ON", "REACH_OFF")

# drop invalid
min_th = 5
max_th = 2000

binds = np.logical_and(ReachesDf['dt'].values > min_th, ReachesDf['dt'].values < max_th)

ReachesDf = ReachesDf.loc[binds]
Exemplo n.º 12
0
# %%
folder = Path("/home/georg/data/grasping_animals/")
folder = Path("/media/georg/htcondor/shared-paton/georg/Animals_reaching")
Animals = utils.get_Animals(folder)

# %%

# Lifeguard
folder = "/media/georg/htcondor/shared-paton/georg/Animals_reaching/JJP-02909"
# Lumberjack
folder = "/media/georg/htcondor/shared-paton/georg/Animals_reaching/JJP-02911"
# Teacher
folder = "/media/georg/htcondor/shared-paton/georg/Animals_reaching/JJP-02912"

Animal = utils.Animal(folder)
SessionsDf = utils.get_sessions(Animal.folder).groupby('task').get_group('learn_to_grasp')

for day, row in SessionsDf.iterrows():
    folder = Path(utils.get_sessions(Animal.folder).path[day])
    LogDf = bhv.get_LogDf_from_path(folder / "arduino_log.txt")
    LogDf['min'] = LogDf['t'] / 60000

    # check each reach
    ReachesDf = bhv.get_spans_from_names(LogDf, "REACH_ON", "REACH_OFF")

    # drop invalid
    min_th = 5
    max_th = 2000

    binds = np.logical_and(ReachesDf['dt'].values > min_th, ReachesDf['dt'].values < max_th)
Exemplo n.º 13
0
 #     # #       ######  #     #  #####   #####      #####  #####    #####   #####   #  #     # #  #  #  #####
 ####### #       #   #   #     #       #       #          # #             #       #  #  #     # #   # #       #
 #     # #     # #    #  #     # #     # #     #    #     # #       #     # #     #  #  #     # #    ## #     #
 #     #  #####  #     # #######  #####   #####      #####  #######  #####   #####  ### ####### #     #  #####

"""

# %% Obtain log_paths and plot dirs
animal_fd_path = utils.get_folder_dialog(initial_dir="/media/storage/shared-paton/georg/Animals_reaching/")
across_session_plot_dir = animal_fd_path / 'plots'
animal_meta = pd.read_csv(animal_fd_path / 'animal_meta.csv')
nickname = animal_meta[animal_meta['name'] == 'Nickname']['value'].values[0]
os.makedirs(across_session_plot_dir, exist_ok=True)

# %% across sessions - plot weight
SessionsDf = utils.get_sessions(animal_fd_path)
Df = pd.read_csv(animal_fd_path / 'animal_meta.csv')
ini_weight = float(Df[Df['name'] == 'Weight']['value'])

for i,row in SessionsDf.iterrows():
    try:
        path = row['path']
        Df = pd.read_csv(Path(path) / 'animal_meta.csv')
        current_weight = float(Df[Df['name'] == 'current_weight']['value'])
        SessionsDf.loc[row.name,'weight'] = current_weight
        SessionsDf.loc[row.name,'weight_frac'] = current_weight / ini_weight
    except:
        pass

# Formatting
fig, axes = plt.subplots()