Exemplo n.º 1
0
    def stdgamma(self, alpha, ainv, bbb, ccc):
        # ainv = sqrt(2 * alpha - 1)
        # bbb = alpha - log(4)
        # ccc = alpha + ainv

        random = self.random
        if alpha <= 0.0:
            raise ValueError, 'stdgamma: alpha must be > 0.0'

        if alpha > 1.0:

            # Uses R.C.H. Cheng, "The generation of Gamma
            # variables with non-integral shape parameters",
            # Applied Statistics, (1977), 26, No. 1, p71-74

            while 1:
                u1 = random()
                u2 = random()
                v = _log(u1/(1.0-u1))/ainv
                x = alpha*_exp(v)
                z = u1*u1*u2
                r = bbb+ccc*v-x
                if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
                    return x

        elif alpha == 1.0:
            # expovariate(1)
            u = random()
            while u <= 1e-7:
                u = random()
            return -_log(u)

        else:   # alpha is between 0 and 1 (exclusive)

            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle

            while 1:
                u = random()
                b = (_e + alpha)/_e
                p = b*u
                if p <= 1.0:
                    x = pow(p, 1.0/alpha)
                else:
                    # p > 1
                    x = -_log((b-p)/alpha)
                u1 = random()
                if not (((p <= 1.0) and (u1 > _exp(-x))) or
                          ((p > 1)  and  (u1 > pow(x, alpha - 1.0)))):
                    break
            return x
Exemplo n.º 2
0
    def stdgamma(self, alpha, ainv, bbb, ccc):
        # ainv = sqrt(2 * alpha - 1)
        # bbb = alpha - log(4)
        # ccc = alpha + ainv

        random = self.random
        if alpha <= 0.0:
            raise ValueError, 'stdgamma: alpha must be > 0.0'

        if alpha > 1.0:

            # Uses R.C.H. Cheng, "The generation of Gamma
            # variables with non-integral shape parameters",
            # Applied Statistics, (1977), 26, No. 1, p71-74

            while 1:
                u1 = random()
                u2 = random()
                v = _log(u1 / (1.0 - u1)) / ainv
                x = alpha * _exp(v)
                z = u1 * u1 * u2
                r = bbb + ccc * v - x
                if r + SG_MAGICCONST - 4.5 * z >= 0.0 or r >= _log(z):
                    return x

        elif alpha == 1.0:
            # expovariate(1)
            u = random()
            while u <= 1e-7:
                u = random()
            return -_log(u)

        else:  # alpha is between 0 and 1 (exclusive)

            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle

            while 1:
                u = random()
                b = (_e + alpha) / _e
                p = b * u
                if p <= 1.0:
                    x = pow(p, 1.0 / alpha)
                else:
                    # p > 1
                    x = -_log((b - p) / alpha)
                u1 = random()
                if not (((p <= 1.0) and (u1 > _exp(-x))) or
                        ((p > 1) and (u1 > pow(x, alpha - 1.0)))):
                    break
            return x
Exemplo n.º 3
0
    def vonmisesvariate(self, mu, kappa):
        # mu:    mean angle (in radians between 0 and 2*pi)
        # kappa: concentration parameter kappa (>= 0)
        # if kappa = 0 generate uniform random angle

        # Based upon an algorithm published in: Fisher, N.I.,
        # "Statistical Analysis of Circular Data", Cambridge
        # University Press, 1993.

        # Thanks to Magnus Kessler for a correction to the
        # implementation of step 4.

        random = self.random
        if kappa <= 1e-6:
            return TWOPI * random()

        a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
        b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
        r = (1.0 + b * b)/(2.0 * b)

        while 1:
            u1 = random()

            z = _cos(_pi * u1)
            f = (1.0 + r * z)/(r + z)
            c = kappa * (r - f)

            u2 = random()

            if not (u2 >= c * (2.0 - c) and u2 > c * _exp(1.0 - c)):
                break

        u3 = random()
        if u3 > 0.5:
            theta = (mu % TWOPI) + _acos(f)
        else:
            theta = (mu % TWOPI) - _acos(f)

        return theta
Exemplo n.º 4
0
    def vonmisesvariate(self, mu, kappa):
        # mu:    mean angle (in radians between 0 and 2*pi)
        # kappa: concentration parameter kappa (>= 0)
        # if kappa = 0 generate uniform random angle

        # Based upon an algorithm published in: Fisher, N.I.,
        # "Statistical Analysis of Circular Data", Cambridge
        # University Press, 1993.

        # Thanks to Magnus Kessler for a correction to the
        # implementation of step 4.

        random = self.random
        if kappa <= 1e-6:
            return TWOPI * random()

        a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
        b = (a - _sqrt(2.0 * a)) / (2.0 * kappa)
        r = (1.0 + b * b) / (2.0 * b)

        while 1:
            u1 = random()

            z = _cos(_pi * u1)
            f = (1.0 + r * z) / (r + z)
            c = kappa * (r - f)

            u2 = random()

            if not (u2 >= c * (2.0 - c) and u2 > c * _exp(1.0 - c)):
                break

        u3 = random()
        if u3 > 0.5:
            theta = (mu % TWOPI) + _acos(f)
        else:
            theta = (mu % TWOPI) - _acos(f)

        return theta
Exemplo n.º 5
0
 def lognormvariate(self, mu, sigma):
     return _exp(self.normalvariate(mu, sigma))
Exemplo n.º 6
0
from VS import log as _log, exp as _exp
from VS import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin

__all__ = ["Random","seed","random","uniform","randint","choice",
           "randrange","shuffle","normalvariate","lognormvariate",
           "cunifvariate","expovariate","vonmisesvariate","gammavariate",
           "stdgamma","gauss","betavariate","paretovariate","weibullvariate",
           "getstate","setstate","jumpahead","whseed"]

def _verify(name, computed, expected):
    if abs(computed - expected) > 1e-7:
        raise ValueError(
            "computed value for %s deviates too much "
            "(computed %g, expected %g)" % (name, computed, expected))

NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
_verify('NV_MAGICCONST', NV_MAGICCONST, 1.71552776992141)

TWOPI = 2.0*_pi
_verify('TWOPI', TWOPI, 6.28318530718)

LOG4 = _log(4.0)
_verify('LOG4', LOG4, 1.38629436111989)

SG_MAGICCONST = 1.0 + _log(4.5)
_verify('SG_MAGICCONST', SG_MAGICCONST, 2.50407739677627)

del _verify

# Translated by Guido van Rossum from C source provided by
# Adrian Baddeley.
Exemplo n.º 7
0
 def lognormvariate(self, mu, sigma):
     return _exp(self.normalvariate(mu, sigma))
Exemplo n.º 8
0
    "Random", "seed", "random", "uniform", "randint", "choice", "randrange",
    "shuffle", "normalvariate", "lognormvariate", "cunifvariate",
    "expovariate", "vonmisesvariate", "gammavariate", "stdgamma", "gauss",
    "betavariate", "paretovariate", "weibullvariate", "getstate", "setstate",
    "jumpahead", "whseed"
]


def _verify(name, computed, expected):
    if abs(computed - expected) > 1e-7:
        raise ValueError("computed value for %s deviates too much "
                         "(computed %g, expected %g)" %
                         (name, computed, expected))


NV_MAGICCONST = 4 * _exp(-0.5) / _sqrt(2.0)
_verify('NV_MAGICCONST', NV_MAGICCONST, 1.71552776992141)

TWOPI = 2.0 * _pi
_verify('TWOPI', TWOPI, 6.28318530718)

LOG4 = _log(4.0)
_verify('LOG4', LOG4, 1.38629436111989)

SG_MAGICCONST = 1.0 + _log(4.5)
_verify('SG_MAGICCONST', SG_MAGICCONST, 2.50407739677627)

del _verify

# Translated by Guido van Rossum from C source provided by
# Adrian Baddeley.