Exemplo n.º 1
0
print("\ntest cost time :%d" % (time.time() - test_start))
print("\n" + "=" * 50 + "Test result" + "=" * 50)
print("\n test accuracy :%f" % (test_accuracy / test_iter))
print("\n true positives :%d" % true_positives)
print("\n false positives :%d" % false_positives)
print("\n true negatives :%d" % true_negatives)
print("\n false negatives :%d" % false_negatives)
print("\n" + "=" * 50 + "  DataSet Describe  " + "=" * 50)
print(
    "\nAll DataSet Number:%s Trainging DataSet Number:%s Test DataSet Number:%s"
    % (totalnum, trainnum, testnum))

mP = true_positives / (true_positives + false_positives)
mR = true_positives / (true_positives + false_negatives)
mF1_score = 2 * mP * mR / (mP + mR)

print("\nPrecision:%f" % mP)
print("\nRecall:%f" % mR)
print("\nF1-Score:%f" % mF1_score)
conmat = confusion_matrix(mlabel, preLabel)
print("\nConfusion Matraics:")
print(conmat)

from Visualization import Visual
matrix = Visual()
matrix.cm_plot(mlabel, preLabel, ['Benign', 'Attack'], '1DCNN_LSTM_2_1')
print('finish image confusion')
print('train time:', duarion)
# ------------------------------------------------------------------------------------------
Exemplo n.º 2
0
        vis.plot(desired_force, PAM_goal, env.object_goal, PAM_path_predicted,
                 object_path_actual, object_path_planned, PAM_path_actual,
                 PAM_path_planned)


if __name__ == '__main__':

    rospy.init_node('high_level_controller', anonymous=True)
    desiredInput = rospy.Publisher('controlInput', controlInput, queue_size=10)
    rospy.Subscriber('feedback',
                     feedback,
                     callback,
                     queue_size=1,
                     buff_size=2**24)

    vis = Visual()
    desired_force = force()
    object_path_actual = Path()
    object_path_actual.header.frame_id = 'frame_0'
    PAM_path_actual = Path()
    PAM_path_actual.header.frame_id = 'frame_0'
    object_path_planned = Path()
    PAM_path_planned = Path()
    old_walker_state = state()
    old_bed_state = state()
    old_blue_chair_state = state()

    env = environment()
    env.example_2()
    # object parameters : Rho(4), Omega(3), width(1), length(1)   #Rho[0,1,2,3]=[mass, inertia, x_c, y_c]
    walker_params = [
Exemplo n.º 3
0
print("\n false negatives :%d" % false_negatives)
print("\n" + "=" * 50 + "  DataSet Describe  " + "=" * 50)
print(
    "\nAll DataSet Number:%s Trainging DataSet Number:%s Test DataSet Number:%s"
    % (totalnum, trainnum, testnum))

mP = true_positives / (true_positives + false_positives)
mR = true_positives / (true_positives + false_negatives)
mF1_score = 2 * mP * mR / (mP + mR)

print("\nPrecision:%f" % mP)
print("\nRecall:%f" % mR)
print("\nF1-Score:%f" % mF1_score)
conmat = confusion_matrix(mlabel, preLabel)
print("\nConfusion Matraics:")
print(conmat)
# print(len(mlabel))

from Visualization import Visual
matrix = Visual()
matrix.cm_plot(
    mlabel, preLabel,
    ['Benign', 'Bot', 'DDoS', 'DoS', 'Patator', 'PortScan', 'WebAttack'],
    '1DCNN_LSTM_7_1')
print('finish image confusion')
print('train time:', duarion)

# ------------------
#
# ------------------------------------------------------------------------
Exemplo n.º 4
0
print("\n test accuracy :%f" % (test_accuracy / test_iter))
print("\n true positives :%d" % true_positives)
print("\n false positives :%d" % false_positives)
print("\n true negatives :%d" % true_negatives)
print("\n false negatives :%d" % false_negatives)
print("\n" + "=" * 50 + "  DataSet Describe  " + "=" * 50)
print("\nAll DataSet Number:%s Trainging DataSet Number:%s Test DataSet Number:%s" % (
    totalnum, trainnum, testnum))

mP = true_positives / (true_positives + false_positives)
mR = true_positives / (true_positives + false_negatives)
mF1_score = 2 * mP * mR / (mP + mR)
print("\nPrecision:%f" % mP)
print("\nRecall:%f" % mR)
print("\nF1-Score:%f" % mF1_score)
conmat = confusion_matrix(mlabel, preLabel)

print("\nConfusion Matraics:")

print(conmat)
print(len(mlabel))

from Visualization import Visual
matrix = Visual()
label12=['Benign','Bot','DDoS','DoSGoldenEye','DoSHulk','DoSSlowhttptest','DoSslowloris','FTPPatator','PortScan','SSHPatator','WebAttackBruteForce','WebAttackXSS']
matrix.cm_plot(mlabel,preLabel,label12,'1DCNN_12_1')
print('finish image confusion')
print('train time:',duarion)

# ------------------------------------------------------------------------------------------
Exemplo n.º 5
0
print("\ntest cost time :%d" % (time.time() - test_start))
print("\n" + "=" * 50 + "Test result" + "=" * 50)
print("\n test accuracy :%f" % (test_accuracy / test_iter))
print("\n true positives :%d" % true_positives)
print("\n false positives :%d" % false_positives)
print("\n true negatives :%d" % true_negatives)
print("\n false negatives :%d" % false_negatives)
print("\n" + "=" * 50 + "  DataSet Describe  " + "=" * 50)
print("\nAll DataSet Number:%s Trainging DataSet Number:%s Test DataSet Number:%s" % (
    totalnum, trainnum, testnum))

mP = true_positives / (true_positives + false_positives)
mR = true_positives / (true_positives + false_negatives)
mF1_score = 2 * mP * mR / (mP + mR)

print("\nPrecision:%f" % mP)
print("\nRecall:%f" % mR)
print("\nF1-Score:%f" % mF1_score)
conmat = confusion_matrix(mlabel, preLabel)
print("\nConfusion Matraics:")
print(conmat)
print(len(mlabel))

from Visualization import Visual
matrix = Visual()
label12=['Benign','Bot','DDoS','DoSGoldenEye','DoSHulk','DoSSlowhttptest','DoSslowloris','FTPPatator','PortScan','SSHPatator','WebAttackBruteForce','WebAttackXSS']
matrix.cm_plot(mlabel,preLabel,label12,'LSTM_12_1')
print('finish image confusion')
print('train time:',duarion)