from Wine import getWineData from Util import plot_decision_regions from sklearn.lda import LDA from sklearn.linear_model import LogisticRegression import numpy as np import matplotlib.pyplot as plt X_train_std, X_test_std, y_train, y_test = getWineData() lda = LDA(n_components=2) X_train_lda = lda.fit_transform(X_train_std, y_train) lr = LogisticRegression() lr.fit(X_train_lda, y_train) plot_decision_regions(X_train_lda, y_train, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') plt.show()
from Wine import getWineData, getWineRawData from sklearn.ensemble import RandomForestClassifier import matplotlib.pyplot as plt import numpy as np X_train, X_test, y_train, y_test = getWineData(kind='none') df_wine = getWineRawData() feat_labels = df_wine.columns[1:] forest = RandomForestClassifier(n_estimators=10000, random_state=0, n_jobs=-1) forest.fit(X_train, y_train) importances = forest.feature_importances_ indices = np.argsort(importances)[::-1] plt.title('Feature Importances') plt.bar(range(X_train.shape[1]), importances[indices], color='lightblue', align='center') plt.xticks(range(X_train.shape[1]), feat_labels[indices], rotation=90) plt.xlim([-1, X_train.shape[1]]) plt.tight_layout() plt.show()