import matplotlib.pyplot as plt from WtProcess import SWTP from SpatialCorrelationThresholdALG import SpCoThALG from ThSearchAlgorithm import ThSearchAlgorithm from ThresholdSelect import ThSelect if __name__ == '__main__': s = Signal(1024) od1 = s.createSin(50, 60, 4) od2 = s.createPulse(50, 60, 4) od3 = s.createSpikes(4) ods = [od1, od2, od3] dnames = ['Sine', 'Pulse', 'Spike'] sfp1pds = [] sfp2pds = [] for od in ods: swt = SWTP(od) coeffs = swt.swtdec(delevel=4) spta2 = SpCoThALG(coeffs) sfp1gcvs = [] sfp2gcvs = [] P = spta2.spcoCors() spta2.BTHassitIndex(1, pk=0.1, pa=4, mode='srmse') for k in range(1, 100): sfp2gcv = spta2.BTHspcothfwp2(k/10) sfp2gcvs.append(sfp2gcv) x=[x/10 for x in range(1, 100)] plt.figure() plt.plot(x, sfp2gcvs) plt.show()
from DenoiseResult import DenoiseRsult if __name__ == '__main__': s = Signal(1024) od1 = s.createSin(50, 60, 4) od2 = s.createPulse(50, 60, 4) od3 = s.createSpikes(4) ods = [od1, od2, od3] dnames = ['Sine', 'Pulse', 'Spike'] sf1pds = [] sf2pds = [] sfp1pds = [] sfp2pds = [] for od in ods: swt = SWTP(od) coeffs = swt.swtdec(wtname='sym6', delevel=4) spta = SpCoThALG(coeffs) nce1s = spta.spcoThf1() nce2s = spta.spcoThf2() sf1pd = swt.swtrec(nce1s, wtname='sym6') sf2pd = swt.swtrec(nce2s, wtname='sym6') sf1pds.append(sf1pd) sf2pds.append(sf2pd) for od in ods: swt = SWTP(od) coeffs = swt.swtdec(wtname='sym6', delevel=4) spta2 = SpCoThALG(coeffs) sfp1ths = [] sfp2ths = []
od3 = s.createSpikes(4) ods = [od1, od2, od3] dnames = ['Sine', 'Pulse', 'Spike'] spds = [] hpds = [] thsemispds = [] thf1pds = [] thf2pds = [] thf3pds = [] dnames = ['Sine', 'Pulse', 'Spike'] thfname = ['soft', 'hard', 'thsemisf', 'thf1', 'thf2', 'thf3'] pdsmatrix = [spds, hpds, thsemispds, thf1pds, thf2pds, thf3pds] thps = [None, None, None, 0.5, 2, 2] for od in ods: swt = SWTP(od) dl = swt.maxdeclevel() coeffs = swt.swtdec(wtname='db4', delevel=4) for i in range(len(pdsmatrix)): ncoeffs = swt.thprocess(coeffs, thf=thfname[i], thp=thps[i]) pd = swt.swtrec(ncoeffs, wtname='db4') pdsmatrix[i].append(pd) ssnrs = [] hsnrs = [] thsemissnrs = [] thf1snrs = [] thf2snrs = [] thf3snrs = [] smses = []
from GetActualSignal import GetActualSignal import math as mt from BlockThMethod import BlockThMethod from ThresholdSelect import ThSelect from BestThEstimation import BestThEstimate from ThSearchAlgorithm import ThSearchAlgorithm from WtProcess import SWTP from DenoiseResult import DenoiseRsult from SpatialCorrelationThresholdALG import SpCoThALG if __name__ == '__main__': ad = GetActualSignal() ad.getwhvalue() od1 = ad.selectvalue(start=11000, end=12024) dl = 4 swt = SWTP(od1) coeffs = swt.swtdec(wtname='db2', delevel=dl) n1coeffs = swt.thprocess(coeffs, thf='soft') n2coeffs = swt.thprocess(coeffs, thf='hard') n3coeffs = swt.thprocess(coeffs, thf='thsemisf') spd = swt.swtrec(n1coeffs, wtname='db2') hpd = swt.swtrec(n2coeffs, wtname='db2') thf1pd = swt.swtrec(n3coeffs, wtname='db2') ad.outputdata(startidex=0, ogdata=od1, pddata=hpd) ssm = DenoiseRsult([], spd).smooth(od1) hsm = DenoiseRsult([], hpd).smooth(od1) thf1sm = DenoiseRsult([], thf1pd).smooth(od1) slrepv = DenoiseRsult([], spd).lrepv(od1, 128)
from GetActualSignal import GetActualSignal import math as mt from BlockThMethod import BlockThMethod from ThresholdSelect import ThSelect from BestThEstimation import BestThEstimate from ThSearchAlgorithm import ThSearchAlgorithm from WtProcess import SWTP from DenoiseResult import DenoiseRsult from NoiseDetection import NoiseDetection if __name__ == '__main__': ad = GetActualSignal() ad.getwhvalue() od1 = ad.selectvalue(start=11000, end=12024) dl = 3 swd = SWTP(od1) coeffs = swd.swtdec(wtname='db2', delevel=dl) gths = [] gth2s = [] bsths = [] shes = NoiseDetection(od1, 'db2').Entropymethod1(4) for i in range(1, len(coeffs)): bthe = BestThEstimate(coeffs[i], thfunction='thf3', thp=2 + 2 * i) thsa = ThSearchAlgorithm() gth = ThSelect(coeffs[i]).DonohoThEx() if shes[i - 1] > 1.5: shes[i - 1] = 1.5 elif shes[i - 1] < 0.8: shes[i - 1] = 0.8 else: pass
from WtProcess import SWTP, DWTP from DenoiseResult import DenoiseRsult from NoiseDetection import NoiseDetection if __name__ == '__main__': ad = GetActualSignal() ad.getwhvalue() od = ad.selectvalue(start=0) ln = len(od) // 1024 spd = [] hpd = [] npd = [] dl = 3 for k in range(ln): od1 = od[k * 1024:k * 1024 + 1024] swt = SWTP(od1) dwt = DWTP(od1) coeffs = swt.swtdec(wtname='db2', delevel=dl) dcoeffs = dwt.dwtdec(wtname='db2', delevel=dl) n1coeffs = swt.thprocess(coeffs, thf='soft') n2coeffs = swt.thprocess(coeffs, thf='hard') spd1 = swt.swtrec(n1coeffs, wtname='db2') hpd1 = swt.swtrec(n2coeffs, wtname='db2') shes = NoiseDetection(od1, 'db2').Entropymethod1(4) gth2s = [] gth3s = [] for i in range(1, len(coeffs)): gth = ThSelect(coeffs[i]).DonohoThEx() gth3 = ThSelect(dcoeffs[i]).EntropyTh2() if shes[i - 1] > 1.5: