Exemplo n.º 1
0
 def test_minSize(self):
     parameters = self.parameters.copy()
     shape = parameters["problemShape"] = (1024,)
     parameters["gridLevels"] = 24
     parameters["minSize"] = 23
     u_actual = np.random.random(shape).ravel()
     A_in = operators.poisson(shape)
     b = tools.flexibleMmult(A_in, u_actual)
     soln, info_dict = mgSolve(A_in, b, parameters)
     if self.verbose:
         print "R shapes:", [r.shape for r in info_dict['R']]
         print "c.v. minSize = ", parameters['minSize']
     assert min(info_dict['R'][-1].shape) > parameters["minSize"]
Exemplo n.º 2
0
 def test_1d_noise_mg(self, parameters=None):
     '''Solve a 2D Poisson equation, with the solution being 2D white noise,
     i.e., np.random.random((NX,NY)). Useful as a sanity check.
     '''
     if parameters is None:
         parameters = self.parameters
     N = NX = parameters['problemShape'][0]
     u_actual = np.random.random((NX,)).reshape((N, 1))
     A_in = operators.poisson((NX,))
     b = tools.flexibleMmult(A_in, u_actual)
     u_mg, info_dict = mgSolve(A_in, b, parameters)
     if self.verbose:
         print 'test_1d_noise_mg: final norm is ', info_dict['norm']
Exemplo n.º 3
0
 def test_threshStop(self):
     size = 36
     u_actual = np.sin(np.array(range(int(size))) * 3.0 / size).T
     A = operators.poisson((size,))
     b = tools.flexibleMmult(A, u_actual)
     parameters = {
                   'problemShape': (size,),
                   'gridLevels': 2,
                   'threshold': 8e-3,
                   'giveInfo': True, 
                   }
     u_mmg, info_dict = mgSolve(A, b, parameters)
     residual_norm = np.linalg.norm(tools.flexibleMmult(A, u_mmg) - b)
     assert parameters['threshold'] > residual_norm
Exemplo n.º 4
0
    def test_2d_mpl_demo(self):
        '''
        Plot a pretty 2D surface, and the result of solving a 2D Poisson equation
        with that surface as the solution.
        '''
        from mpl_toolkits.mplot3d import Axes3D
        import matplotlib.pyplot as plt
        sizemultiplier = 2
        NX = 8 * sizemultiplier
        cycles = 3
        actualtraces = 8
        mgtraces = 16
        NY = NX
        N = NX * NY
        (X, Y, u_actual) = mpl_test_data(delta=1 / float(sizemultiplier))
        A_in = operators.poisson((NX, NY))
        b = tools.flexibleMmult(A_in, u_actual.ravel())
        u_mg = mgSolve(A_in, b, {
                                  'problemShape': (NX, NY),
                                  'gridLevels': 2,
                                  'iterations': 1,
                                  'verbose': False,
                                  'cycles': 300,
                                  'dense': True
                                 }
                       )

        fig = plt.figure()
        ax = Axes3D(fig)
        fig.suptitle('blue is actual; red is %i v-cycles; %i unknowns' % (cycles, N))
        # ax = fig.add_subplot(111,projection='3d') #not in matplotlib version 0.99, only version 1.x
        ax.plot_wireframe(X, Y, u_actual,
                          rstride=NX / actualtraces,
                          cstride=NY / actualtraces,
                          color=((0, 0, 1.0),)
                         )
        # ax.scatter(X,Y,u_mg[0],c=((1.,0,0),),s=40)
        ax.plot_wireframe(X, Y, u_mg.reshape((NX, NY)),
                          rstride=NX / mgtraces,
                          cstride=NY / mgtraces,
                          color=((1.0, 0, 0),)
                         )
        filename = 'output/test_2d_mpl_demo-%i_vycles-%i_N.png' % (cycles, N)
        if self.saveFig: fig.savefig(filename)
        # plt.show()
        if self.verbose:
            print 'norm is', (np.linalg.norm(openmg.tools.getresidual(b, A_in, u_mg[0], N)))
Exemplo n.º 5
0
 def test_3d_noise_mg(self):
     '''Solve a 3D Poisson equation, with the solution being 2D white noise,
     i.e., np.random.random((NX, NY, NZ)). Useful as a sanity check.
     '''
     NX = NY = NZ = 8
     N = NX * NY * NZ
     shape = NX, NY, NZ
     u_actual = np.random.random(shape).reshape((N, 1))
     A_in = operators.poisson(shape)
     b = tools.flexibleMmult(A_in, u_actual)
     u_mg, info_dict = mgSolve(A_in, b, {
                                            'problemShape': shape,
                                            'gridLevels': 3,
                                            'iterations': 1,
                                            'verbose': False,
                                            'threshold': 4,
                                            'giveInfo': True,
                                           }
                                 )
     if self.verbose:
         print 'test_1d_noise_mg: final norm is ', info_dict['norm']
Exemplo n.º 6
0
 def test_a(self):
     '''
     Poisson equation on a sine curve. In 3D?
     It wasn't originally, but the restriciton algorithm was having
     trouble with 1D. This might bear investigation.
     '''
     problemscale = 12
     size = problemscale ** 3
     gridLevels = 4
     u_zeros = np.zeros((size,))
     u_actual = np.sin(np.array(range(int(size))) * 3.0 / size).T
     A = operators.poisson((size,))
     b = tools.flexibleMmult(A, u_actual)
     uSmoothed = smooth(A, b, u_zeros, iterations=1)
     parameters = {'coarsestLevel': gridLevels - 1,
                   'problemShape': (problemscale, problemscale, problemscale),
                   'gridLevels': gridLevels,
                   'threshold': 8e-3,
                   }
     u_mmg = mgSolve(A, b, parameters)
     if self.verbose:
         print 'norm is', (np.linalg.norm(tools.getresidual(b, A, uSmoothed.reshape((size, 1)), size)))
     residual_norm = np.linalg.norm(tools.flexibleMmult(A, u_mmg) - b)
     assert parameters['threshold'] > residual_norm