Exemplo n.º 1
0
		b = c + a
		c = b + a
	return s

def e0002_006():
	a, b, c = 2, 3, 5
	while c < MAX: 
		a = b + c
		b = c + a
		c = b + a
	return (c - 1) // 2

def e0002_007():
	a, b =  0, 2
	while b < MAX:
		a, b = b, a + 4*b
	return (b+a-2)//4

from math import log
def e0002_008():
	sq = 5 ** .5
	n = log(MAX * sq)//log(2 + sq)
	x = (2 + sq)
	y = (2 - sq)
	return int(((x-x**(n+1)) / (1-x) - (y-y**(n+1)) / (1-y))/sq)
# Better for HUGE MAX

if __name__ == '__main__':
	from __init__ import start
	start(e0002_000())
Exemplo n.º 2
0
		n = (n - 1)/x
		return x * n/2. * (n + 1)
	
	return sumx(1000,5) + sumx(1000,3) - sumx(1000,15)

def e0001_010():
	def sumx(n,x):
		n = (n - 1)//x
		return x * n/2. * (n + 1)
	
	return sumx(1000,5) + sumx(1000,3) - sumx(1000,15)

def e0001_011():
	def sumx(n,x):
		n = (n - 1)//x
		return x * n * (n + 1) / 2
	
	return sumx(1000,5) + sumx(1000,3) - sumx(1000,15)

def e0001_012():
	def sumx(n,x):
		n = (n - 1)//x
		return x * n * (n + 1) // 2
		
	return sumx(1000,5) + sumx(1000,3) - sumx(1000,15)


if __name__ == '__main__':
	from __init__ import start
	start(e0001_000())