Exemplo n.º 1
0
def models(target_var: str = "VCI1M"):
    # NO IGNORE VARS
    ignore_vars = None
    # drop the target variable from ignore_vars
    # ignore_vars = [v for v in ignore_vars if v != target_var]
    # assert target_var not in ignore_vars

    # -------------
    # persistence
    # -------------
    parsimonious()

    # regression(ignore_vars=ignore_vars)
    # gbdt(ignore_vars=ignore_vars)
    # linear_nn(ignore_vars=ignore_vars)

    # -------------
    # LSTM
    # -------------
    rnn(
        experiment="one_month_forecast",
        include_pred_month=True,
        surrounding_pixels=None,
        explain=False,
        static="features",
        ignore_vars=ignore_vars,
        num_epochs=50,
        early_stopping=5,
        hidden_size=256,
        include_latlons=True,
    )

    # -------------
    # EALSTM
    # -------------
    earnn(
        experiment="one_month_forecast",
        include_pred_month=True,
        surrounding_pixels=None,
        pretrained=False,
        explain=False,
        static="features",
        ignore_vars=ignore_vars,
        num_epochs=50,
        early_stopping=5,
        hidden_size=256,
        static_embedding_size=64,
        include_latlons=True,
    )

    # rename the output file
    data_path = get_data_path()

    _rename_directory(
        from_path=data_path / "models" / "one_month_forecast",
        to_path=data_path / "models" /
        f"one_month_forecast_BOKU_{target_var}_adede_only_vars",
    )
    def __init__(
        self, train_length: int, train_hilo: str, test_hilo: str, test_length: int = 3
    ):
        self.train_length = train_length
        self.train_hilo = train_hilo
        self.test_hilo = test_hilo
        self.test_length = test_length

        assert train_hilo in ["high", "med", "low"]
        assert test_hilo in ["high", "med", "low"]

        try:
            earnn(pretrained=False, ignore_vars=ignore_vars, static=None)
        except RuntimeError:
            print(f"\n{'*'*10}\n FAILED: EALSTM \n{'*'*10}\n")
def ealstm(ignore_vars, static="features"):
    # -------------
    # EALSTM
    # -------------
    earnn(
        experiment="one_month_forecast",
        surrounding_pixels=None,
        pretrained=False,
        explain=False,
        ignore_vars=ignore_vars,
        num_epochs=50,
        early_stopping=10,
        hidden_size=256,
        static_embedding_size=64,
        # static data
        static=static,
        include_pred_month=True,
        include_latlons=True,
        include_prev_y=True,
    )
Exemplo n.º 4
0
        "tprate_std_3",
        "tprate_mean_3",
    ]

    persistence(experiment="nowcast")
    # regression(ignore_vars=always_ignore_vars)
    # gbdt(ignore_vars=always_ignore_vars)
    # linear_nn(ignore_vars=always_ignore_vars)
    # rnn(ignore_vars=always_ignore_vars)
    earnn(
        experiment="nowcast",
        include_pred_month=True,
        surrounding_pixels=None,
        pretrained=False,
        explain=False,
        static="features",
        ignore_vars=always_ignore_vars,
        num_epochs=1,  #  50,
        early_stopping=5,
        hidden_size=256,
        static_embedding_size=64,
    )

    # rename the output file
    data_path = get_data_path()

    _rename_directory(
        from_path=data_path / "models" / "nowcast",
        to_path=data_path / "models" / "nowcast_tommy",
        with_datetime=True,
    )
Exemplo n.º 5
0
def run_all_models_as_experiments(
    vars_to_include: List[str],
    ignore_vars: List[str],
    static: bool,
    run_regression: bool = True,
):
    print(f"Experiment {vars_to_include} Static: {static}")

    # RUN EXPERIMENTS
    if run_regression:
        regression(ignore_vars=ignore_vars, include_static=static)

    if static:
        # 'embeddings' or 'features'
        try:
            linear_nn(ignore_vars=ignore_vars, static="embeddings")
        except KeyboardInterrupt:
            raise
        except Exception as e:
            logging.debug(
                f"\n{'*'*10}\n FAILED: LinearNN for vars={vars_to_include} static={static}\n{'*'*10}\n"
            )
            logging.debug(e)

        try:
            rnn(ignore_vars=ignore_vars, static="embeddings")
        except KeyboardInterrupt:
            raise
        except Exception as e:
            logging.debug(
                f"\n{'*'*10}\n FAILED: RNN for vars={vars_to_include} static={static}\n{'*'*10}\n"
            )
            logging.debug(e)

        try:
            earnn(pretrained=False,
                  ignore_vars=ignore_vars,
                  static="embeddings")
        except KeyboardInterrupt:
            raise
        except Exception as e:
            logging.debug(
                f"\n{'*'*10}\n FAILED: EALSTM for vars={vars_to_include} static={static}\n{'*'*10}\n"
            )
            logging.debug(e)

    else:
        try:
            linear_nn(ignore_vars=ignore_vars, static=None)
        except KeyboardInterrupt:
            raise
        except Exception as e:
            logging.debug(
                f"\n{'*'*10}\n FAILED: LinearNN for vars={vars_to_include} static={static}\n{'*'*10}\n"
            )
            logging.debug(e)

        try:
            rnn(ignore_vars=ignore_vars, static=None)
        except KeyboardInterrupt:
            raise
        except Exception as e:
            logging.debug(
                f"\n{'*'*10}\n FAILED: RNN for vars={vars_to_include} static={static}\n{'*'*10}\n"
            )
            logging.debug(e)

        try:
            # NO NEED to run the EALSTM without static data because
            # just equivalent to the RNN
            earnn(pretrained=False, ignore_vars=ignore_vars, static=None)
        except KeyboardInterrupt:
            raise
        except Exception as e:
            logging.debug(
                f"\n{'*'*10}\n FAILED: EALSTM for vars={vars_to_include} static={static}\n{'*'*10}\n"
            )
            logging.debug(e)

    # RENAME DIRECTORY
    data_dir = get_data_path().absolute()
    rename_model_experiment_file(data_dir, vars_to_include, static)
    print(f"Experiment {vars_to_include} finished")
Exemplo n.º 6
0
    important_vars = ["VCI", "precip", "t2m", "pev", "E", "SMsurf", "SMroot"]
    always_ignore_vars = ["ndvi", "p84.162", "sp", "tp", "Eb"]

    # persistence()
    # regression(ignore_vars=always_ignore_vars, predict_delta=True)
    # gbdt(ignore_vars=always_ignore_vars, predict_delta=True)
    # linear_nn(ignore_vars=always_ignore_vars, predict_delta=True)
    # rnn(ignore_vars=always_ignore_vars, predict_delta=True)
    earnn(
        experiment="one_month_forecast",
        include_pred_month=True,
        surrounding_pixels=None,
        pretrained=False,
        explain=False,
        static="features",
        ignore_vars=always_ignore_vars,
        num_epochs=50,  # 50
        early_stopping=5,  # 5
        hidden_size=256,
        static_embedding_size=64,
        predict_delta=True,
        spatial_mask="data/interim/boundaries_preprocessed/kenya_asal_mask.nc",
    )

    # rename the output file
    data_path = get_data_path()

    _rename_directory(
        from_path=data_path / "models" / "one_month_forecast",
        to_path=data_path / "models" / "one_month_forecast_predict_delta_ASAL",
        with_datetime=False,
def run_experiments(
    train_hilo: str,
    test_hilo: str,
    train_length: int,
    static: bool,
    ignore_vars: Optional[List[str]] = None,
    run_regression: bool = True,
    all_models: bool = False,
):
    # run baseline model
    print("\n\nBASELINE MODEL:")
    persistence()
    print("\n\n")

    # RUN EXPERIMENTS
    if run_regression:
        regression(ignore_vars=ignore_vars, include_static=static)

    if static:
        # 'embeddings' or 'features'
        try:
            earnn(pretrained=False,
                  ignore_vars=ignore_vars,
                  static="embeddings")
        except RuntimeError:
            print(f"\n{'*'*10}\n FAILED: EALSTM \n{'*'*10}\n")

        if all_models:  # run all other models ?
            try:
                linear_nn(ignore_vars=ignore_vars, static="embeddings")
            except RuntimeError:
                print(f"\n{'*'*10}\n FAILED: LinearNN \n{'*'*10}\n")

            try:
                rnn(ignore_vars=ignore_vars, static="embeddings")
            except RuntimeError:
                print(f"\n{'*'*10}\n FAILED: RNN \n{'*'*10}\n")

            try:
                earnn(pretrained=False, ignore_vars=ignore_vars, static=None)
            except RuntimeError:
                print(f"\n{'*'*10}\n FAILED: EALSTM \n{'*'*10}\n")

    else:  # NO STATIC data
        try:
            rnn(ignore_vars=ignore_vars, static=None)
        except RuntimeError:
            print(f"\n{'*'*10}\n FAILED: RNN \n{'*'*10}\n")

        if all_models:  # run all other models ?
            try:
                linear_nn(ignore_vars=ignore_vars, static=None)
            except RuntimeError:
                print(f"\n{'*'*10}\n FAILED: LinearNN \n{'*'*10}\n")

    # RENAME DIRECTORY
    data_dir = get_data_path()
    rename_experiment_dir(data_dir,
                          train_hilo=train_hilo,
                          test_hilo=test_hilo,
                          train_length=train_length)
    print(
        f"\n**Experiment finished**\n",
        "train_length: " + str(train_length),
        "test_hilo: " + test_hilo,
        "train_hilo: " + train_hilo,
        "\ntrain_years:\n",
        train_years,
        "\n",
        "test_years:\n",
        test_years,
    )
        clear_nans=True,
        weight_observations=False,
    )

    # -------------
    # EALSTM
    # -------------
    earnn(
        experiment="one_month_forecast",
        include_pred_month=True,
        surrounding_pixels=None,
        pretrained=False,
        explain=False,
        static="features",
        ignore_vars=always_ignore_vars,
        num_epochs=num_epochs,
        early_stopping=early_stopping,
        hidden_size=hidden_size,
        static_embedding_size=static_size,
        include_latlons=True,
        include_yearly_aggs=False,
        clear_nans=True,
        weight_observations=False,
        pred_month_static=False,
    )

    # rename the output file
    data_path = get_data_path()

    # _rename_directory(
    #     from_path=data_path / "models" / "one_month_forecast",
    #     to_path=data_path / "models" / "one_month_forecast_BASE_static_vars",
Exemplo n.º 9
0
def models(
    target_var: str = "boku_VCI",
    adede_only=False,
    experiment_name=None,
    check_inversion=False,
):
    if adede_only:
        ignore_vars = [
            "p84.162",
            "sp",
            "tp",
            "Eb",
            "VCI",
            "modis_ndvi",
            "pev",
            "t2m",
            "E",
            "SMroot",
            "SMsurf",
        ]
    else:
        ignore_vars = [
            "p84.162",
            "sp",
            "tp",
            "Eb",
            "VCI",
            "modis_ndvi",
            "SMroot",
            "SMsurf",
        ]

    # drop the target variable from ignore_vars
    ignore_vars = [v for v in ignore_vars if v != target_var]
    assert target_var not in ignore_vars

    # -------------
    # persistence
    # -------------
    parsimonious()

    # regression(ignore_vars=ignore_vars)
    # gbdt(ignore_vars=ignore_vars)
    # linear_nn(ignore_vars=ignore_vars)

    # -------------
    # LSTM
    # -------------
    rnn(
        experiment="one_month_forecast",
        include_pred_month=True,
        surrounding_pixels=None,
        explain=False,
        static="features",
        ignore_vars=ignore_vars,
        num_epochs=50,  # 1,  # 50 ,
        early_stopping=5,
        hidden_size=256,
        include_latlons=True,
        check_inversion=check_inversion,
    )

    # -------------
    # EALSTM
    # -------------
    earnn(
        experiment="one_month_forecast",
        include_pred_month=True,
        surrounding_pixels=None,
        pretrained=False,
        explain=False,
        static="features",
        ignore_vars=ignore_vars,
        num_epochs=50,  # 1,  # 50 ,
        early_stopping=5,
        hidden_size=256,
        static_embedding_size=64,
        include_latlons=True,
        check_inversion=check_inversion,
    )

    # rename the output file
    data_path = get_data_path()
    if experiment_name is None:
        experiment_name = (
            f"one_month_forecast_BOKU_{target_var}_our_vars_{'only_P_VCI' if adede_only else 'ALL'}",
        )

    _rename_directory(
        from_path=data_path / "models" / "one_month_forecast",
        to_path=data_path / "models" / experiment_name,
    )