#Step 6: Parse arguments options.parse() #Use random seed random.seed(options.args.random_seed) #Custom function to read language from input options.args.predict_languages = languages(options.args.predict_languages) #Print system printer = Printer('System') printer.system(options.args_dict) #Step 7: Create data with default arguments data = Data(options.args.avoid_skewness, options.args.data_folder, options.args.predict_label, options.args.data_method) #Step 8: Add all datasources and transform them to row(Y, X) format #Custom, should be self-made! #Step 8.1: Add the files or folders the data is preserved in (only if available) if options.args.predict_languages: data.file_train = options.args.data_folder + 'training/' # data.file_development = 'eng-trial.pickle' # data.file_test = 'eng-test.pickle' #Custom function data.languages = options.args.predict_languages #Load data into a file data.train = data.load(data.file_train, format='specific_age_gender')
#Step 6: Parse arguments options.parse() #Use random seed random.seed(options.args.random_seed) #Custom function to read language from input options.args.predict_languages = languages(options.args.predict_languages) #Print system printer = Printer('System') printer.system(options.args_dict) #Step 7: Create data with default arguments data = Data(options.args.avoid_skewness, options.args.data_folder, options.args.predict_label, options.args.data_method) #Step 8: Add all datasources and transform them to row(Y, X) format #Custom, should be self-made! #Step 8.1: Add the files or folders the data is preserved in (only if available) data.file_train = 'impression_data.csv' #Custom function data.languages = options.args.predict_languages #Load data into a file data.train, test = data.load(data.file_train, format='complex_file') x_tester = [x[1] for x in test] y_tester = [y[0] for y in test] #Step 8.2: Formulate the preprocessing steps which have to be done
#options.add(name='predict_languages', _type=str, _default='esdi', _help='specify which language you want to predict') #Step 6: Parse arguments options.parse() #Use random seed random.seed(options.args.random_seed) #Custom function to read language from input #Print system printer = Printer('System') printer.system(options.args_dict) #Step 7: Create data with default arguments data = Data(options.args.avoid_skewness, options.args.data_folder, options.args.predict_label, options.args.data_method) #Step 8: Add all datasources and transform them to row(Y, X) format #Custom, should be self-made! #Step 8.1: Add the files or folders the data is preserved in (only if available) file_name = 'conversion_path' #data.file_train = 'conversion_chance.pickle' #data.file_train = 'conversion_product.pickle' data.file_train = file_name'.pickle' #Custom function #Load data into a file data.train = data.load(data.file_train, format='pickle')