def __init__( self, pred=rforest, _smoteit=True, _n=-1, _tuneit=False, dataName=None, reps=1): self.pred = pred self.dataName = dataName self.out, self.out_pred = [self.dataName], [] self._smoteit = _smoteit self.train, self.test = self.categorize() self.reps = reps self._n = _n self.tunedParams = None if not _tuneit \ else tuner(self.pred, self.train[_n]) self.headers = createTbl( self.train[ self._n], isBin=False, bugThres=1).headers
def __init__(self, pred=rforest, _smoteit=True, _n=-1, _tuneit=False, dataName=None, reps=1): self.pred = pred self.dataName = dataName self.out, self.out_pred = [self.dataName], [] self._smoteit = _smoteit self.train, self.test = self.categorize() self.reps = reps self._n = _n self.tunedParams = None if not _tuneit \ else tuner(self.pred, self.train[_n]) self.headers = createTbl(self.train[self._n], isBin=False, bugThres=1).headers
def __init__(self, file='ant', tuned=True): self.file = file self.train = createTbl(data(dataName=self.file).train[-1], isBin=True) self.test = createTbl(data(dataName=self.file).test[-1], isBin=True) self.param = dEvol.tuner(rforest, data(dataName=self.file).train[-1]) if \ tuned else None
def __init__(self, file='ant'): self.file = file self.train = createTbl(data(dataName=self.file).train[-1], isBin=True) self.test = createTbl(data(dataName=self.file).test[-1], isBin=True) self.param = dEvol.tuner(rforest, data(dataName=self.file).train[-1])