Exemplo n.º 1
0
    def __init__(self,
                 env,
                 observations,
                 latent,
                 estimate_q=False,
                 vf_latent=None,
                 sess=None,
                 **tensors):
        """
        Parameters:
        ----------
        env             RL environment

        observations    tensorflow placeholder in which the observations will be fed

        latent          latent state from which policy distribution parameters should be inferred

        vf_latent       latent state from which value function should be inferred (if None, then latent is used)

        sess            tensorflow session to run calculations in (if None, default session is used)

        **tensors       tensorflow tensors for additional attributes such as state or mask

        """

        self.X = observations
        self.state = tf.constant([])
        self.initial_state = None
        self.__dict__.update(tensors)

        vf_latent = vf_latent if vf_latent is not None else latent

        vf_latent = tf.layers.flatten(vf_latent)
        latent = tf.layers.flatten(latent)

        # Based on the action space, will select what probability distribution type
        self.pdtype = make_pdtype(env.action_space)

        self.pd, self.pi = self.pdtype.pdfromlatent(latent, init_scale=0.01)

        # Take an action
        self.action = self.pd.sample()

        # Calculate the neg log of our probability
        self.neglogp = self.pd.neglogp(self.action)
        self.sess = sess or tf.get_default_session()

        if estimate_q:
            assert isinstance(env.action_space, gym.spaces.Discrete)
            self.q = fc(vf_latent, 'q', env.action_space.n)
            self.vf = self.q
        else:
            self.vf = fc(vf_latent, 'vf', 1)
            self.vf = self.vf[:, 0]

        #Lyapunov
        self.Lyapunov = fc(vf_latent, 'vf', 1)
        self.Lyapunov = self.Lyapunov[:, 0]
Exemplo n.º 2
0
 def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
     pdparam = fc(latent_vector,
                  'pi',
                  self.ncat,
                  init_scale=init_scale,
                  init_bias=init_bias)
     return self.pdfromflat(pdparam), pdparam
def nature_cnn(unscaled_images, **conv_kwargs):
    """
    CNN from Nature paper.
    """
    scaled_images = tf.cast(unscaled_images, tf.float32) / 255.
    activ = tf.nn.relu
    h = activ(
        conv(scaled_images,
             'c1',
             nf=32,
             rf=8,
             stride=4,
             init_scale=np.sqrt(2),
             **conv_kwargs))
    h2 = activ(
        conv(h,
             'c2',
             nf=64,
             rf=4,
             stride=2,
             init_scale=np.sqrt(2),
             **conv_kwargs))
    h3 = activ(
        conv(h2,
             'c3',
             nf=64,
             rf=3,
             stride=1,
             init_scale=np.sqrt(2),
             **conv_kwargs))
    h3 = conv_to_fc(h3)
    return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))
    def network_fn(X):
        h = tf.cast(X, tf.float32) / 255.

        activ = tf.nn.relu
        h = activ(conv(h, 'c1', nf=8, rf=8, stride=4, init_scale=np.sqrt(2), **conv_kwargs))
        h = activ(conv(h, 'c2', nf=16, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs))
        h = conv_to_fc(h)
        h = activ(fc(h, 'fc1', nh=128, init_scale=np.sqrt(2)))
        return h
    def network_fn(X):
        h = tf.layers.flatten(X)
        for i in range(num_layers):
            h = fc(h, 'mlp_fc{}'.format(i), nh=num_hidden, init_scale=np.sqrt(2))
            if layer_norm:
                h = tf.contrib.layers.layer_norm(h, center=True, scale=True)
            h = activation(h)

        return h
Exemplo n.º 6
0
 def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
     mean = fc(latent_vector,
               'pi',
               self.size,
               init_scale=init_scale,
               init_bias=init_bias)
     logstd = tf.get_variable(name='pi/logstd',
                              shape=[1, self.size],
                              initializer=tf.zeros_initializer())
     pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
     return self.pdfromflat(pdparam), mean
def network_fn(X):
    num_layers = 4
    num_hidden = 100
    # activation=tf.tanh
    activation = tf.nn.relu
    layer_norm = False
    h = tf.layers.flatten(X)
    for i in range(num_layers):
        h = fc(h,
               'mlp_fc{}'.format(i),
               nh=num_hidden,
               init_scale=np.sqrt(2),
               trainable=True)
        if layer_norm:
            h = tf.contrib.layers.layer_norm(h, center=True, scale=True)
        h = activation(h)

    return h