def gen_hypothesis(self) -> Onfsm:
        """
        Generate automaton based on the values found in the abstracted observation table.

        Returns:

            Current abstracted hypothesis

        """
        state_distinguish = dict()
        states_dict = dict()
        initial = None

        unified_S = self.S + self.S_dot_A

        stateCounter = 0
        for prefix in self.S:
            state_id = f's{stateCounter}'
            states_dict[prefix] = OnfsmState(state_id)

            states_dict[prefix].prefix = prefix
            state_distinguish[self.row_to_hashable(
                prefix)] = states_dict[prefix]

            if prefix == self.S[0]:
                initial = states_dict[prefix]
            stateCounter += 1

        for prefix in self.S:
            similar_rows = []
            for row in unified_S:
                if self.row_to_hashable(row) == self.row_to_hashable(prefix):
                    similar_rows.append(row)
            for row in similar_rows:
                for a in self.A:
                    for t in self.observation_table.T[row][a]:
                        if (row[0] + a, row[1] + tuple([t])) in unified_S:
                            state_in_S = state_distinguish[
                                self.row_to_hashable(
                                    (row[0] + a, row[1] + tuple([t])))]

                            if (t, state_in_S
                                ) not in states_dict[prefix].transitions[a[0]]:
                                states_dict[prefix].transitions[a[0]].append(
                                    (t, state_in_S))

        assert initial
        automaton = Onfsm(initial, [s for s in states_dict.values()])
        automaton.characterization_set = self.E

        return automaton
Exemplo n.º 2
0
    def gen_hypothesis(self) -> Automaton:
        """
        Generate automaton based on the values found in the observation table.

        Returns:

            Current hypothesis

        """
        state_distinguish = dict()
        states_dict = dict()
        initial = None

        stateCounter = 0
        for prefix in self.S:
            state_id = f's{stateCounter}'
            states_dict[prefix] = OnfsmState(state_id)

            states_dict[prefix].prefix = prefix
            state_distinguish[self.row_to_hashable(
                prefix)] = states_dict[prefix]

            if prefix == self.S[0]:
                initial = states_dict[prefix]
            stateCounter += 1

        for prefix in self.S:
            curr_node = self.sul.pta.get_to_node(prefix[0], prefix[1])
            for a in self.A:
                trace = self.sul.pta.get_all_traces(curr_node, a)
                for t in trace:
                    reached_row = (prefix[0] + a, prefix[1] + (t[-1], ))
                    if self.row_to_hashable(
                            reached_row) not in state_distinguish.keys():
                        print('reeee')
                    state_in_S = state_distinguish[self.row_to_hashable(
                        reached_row)]
                    assert state_in_S  # shouldn't be necessary because of the if condition
                    states_dict[prefix].transitions[a[0]].append(
                        (t[-1], state_in_S))

        assert initial
        automaton = Onfsm(initial, [s for s in states_dict.values()])
        automaton.characterization_set = self.E

        return automaton
Exemplo n.º 3
0
    def gen_hypothesis(self) -> Automaton:
        """
        Generate automaton based on the values found in the observation table.

        Returns:

            Current hypothesis

        """
        state_distinguish = dict()
        states_dict = dict()
        initial = None

        stateCounter = 0
        for prefix in self.S:
            state_id = f's{stateCounter}'
            states_dict[prefix] = OnfsmState(state_id)

            states_dict[prefix].prefix = prefix
            state_distinguish[self.row_to_hashable(
                prefix)] = states_dict[prefix]

            if prefix == self.S[0]:
                initial = states_dict[prefix]
            stateCounter += 1

        for prefix in self.S:
            for a in self.A:
                for t in self.T[prefix][a]:
                    state_in_S = state_distinguish[self.row_to_hashable(
                        (prefix[0] + a, prefix[1] + tuple([t])))]
                    assert state_in_S
                    states_dict[prefix].transitions[a[0]].append(
                        (t, state_in_S))

        assert initial
        automaton = Onfsm(initial, [s for s in states_dict.values()])
        automaton.characterization_set = self.E

        return automaton