Exemplo n.º 1
0
def angular_integration(IM, origin=None, Jacobian=True, dr=1, dt=None):
    """Angular integration of the image.

    Returns the one-dimensional intensity profile as a function of the
    radial coordinate.

    Note: the use of Jacobian=True applies the correct Jacobian for the
    integration of a 3D object in spherical coordinates.

    Parameters
    ----------
    IM : 2D numpy.array
        The data image.

    origin : tuple
        Image center coordinate relative to *bottom-left* corner
        defaults to ``rows//2, cols//2``.

    Jacobian : boolean
        Include :math:`r\sin\\theta` in the angular sum (integration).
        Also, ``Jacobian=True`` is passed to
        :func:`abel.tools.polar.reproject_image_into_polar`,
        which includes another value of ``r``, thus providing the appropriate
        total Jacobian of :math:`r^2\sin\\theta`.

    dr : float
        Radial coordinate grid spacing, in pixels (default 1). `dr=0.5` may
        reduce pixel granularity of the speed profile.

    dt : float
        Theta coordinate grid spacing in radians.
        if ``dt=None``, dt will be set such that the number of theta values
        is equal to the height of the image (which should typically ensure
        good sampling.)

    Returns
    ------
    r : 1D numpy.array
         radial coordinates

    speeds : 1D numpy.array
         Integrated intensity array (vs radius).

     """

    polarIM, R, T = reproject_image_into_polar(
        IM, origin, Jacobian=Jacobian, dr=dr, dt=dt)

    dt = T[0, 1] - T[0, 0]

    if Jacobian:  # x r sinθ
        polarIM = polarIM * R * np.abs(np.sin(T))

    speeds = np.trapz(polarIM, axis=1, dx=dt)

    n = speeds.shape[0]

    return R[:n, 0], speeds   # limit radial coordinates range to match speed
Exemplo n.º 2
0
def angular_integration(IM, origin=None, Jacobian=True, dr=1, dt=None):
    """ 
    Angular integration of the image.

    Returns the one-dimentional intensity profile as a function of the
    radial coordinate.
    
    Note: the use of Jacobian=True applies the correct Jacobian for the integration of a 3D object in spherical coordinates.

    Parameters
    ----------
    IM : 2D numpy.array
        The data image.

    origin : tuple
        Image center coordinate relative to *bottom-left* corner
        defaults to ``rows//2+rows%2,cols//2+cols%2``.

    Jacobian : boolean
        Include :math:`r\sin\\theta` in the angular sum (integration).
        Also, ``Jacobian=True`` is passed to 
        :func:`abel.tools.polar.reproject_image_into_polar`,
        which includes another value of ``r``, thus providing the appropriate 
        total Jacobian of :math:`r^2\sin\\theta`.

    dr : float
        Radial coordinate grid spacing, in pixels (default 1). `dr=0.5` may 
        reduce pixel granularity of the speed profile.

    dt : float
        Theta coordinate grid spacing in degrees. 
        if ``dt=None``, dt will be set such that the number of theta values
        is equal to the height of the image (which should typically ensure
        good sampling.)

    Returns
    -------
    r : 1D numpy.array
         radial coordinates

    speeds : 1D numpy.array
         Integrated intensity array (vs radius).

     """

    polarIM, R, T = reproject_image_into_polar(
        IM, origin, Jacobian=Jacobian, dr=dr, dt=dt)    

    dt = T[0,1] - T[0,0]

    if Jacobian:  # x r sinθ
        polarIM = polarIM * R * np.abs(np.sin(T))
    
    speeds = np.trapz(polarIM, axis=1, dx=dt)

    n = speeds.shape[0]

    return R[:n, 0], speeds   # limit radial coordinates range to match speed
Exemplo n.º 3
0
def radial_integration(IM, radial_ranges=None):
    """ Intensity variation in the angular coordinate.

    This function is the :math:`\\theta`-coordinate complement to 
    :func:`abel.tools.vmi.angular_integration`

    (optionally and more useful) returning intensity vs angle for defined
    radial ranges, to evaluate the anisotropy parameter.

    See :doc:`examples/example_O2_PES_PAD.py <examples>`

    Parameters
    ----------
    IM : 2D numpy.array
        Image data

    radial_ranges : list of tuple ranges or int step
        tuple integration ranges
            ``[(r0, r1), (r2, r3), ...]``
            evaluates the intensity vs angle
            for the radial ranges ``r0_r1``, ``r2_r3``, etc.
        int - the whole radial range ``(r0, r_step), (r_step, r_2step), ..)`` 

    Returns
    -------
    intensity_vs_theta: 2D numpy.array
       Intensity vs angle distribution for each selected radial range.

    theta: 1D numpy.array
       Angle coordinates, referenced to vertical direction.

    radial_midpt: numpy.array
       Array of radial positions of the mid-point of the integration range

    """

    polarIM, r_grid, theta_grid = reproject_image_into_polar(IM)

    theta = theta_grid[0, :]  # theta coordinates
    r = r_grid[:, 0]          # radial coordinates

    if radial_ranges is None:
        radial_ranges = 1
    if isinstance(radial_ranges, int):
        radial_ranges = list(zip(r[:-radial_ranges], r[radial_ranges:]))

    intensity_vs_theta_at_R = []
    radial_midpt = []
    for rr in radial_ranges:
        subr = np.logical_and(r >= rr[0], r <= rr[1])

        # sum intensity across radius of spectral feature
        intensity_vs_theta_at_R.append(np.sum(polarIM[subr], axis=0))
        radial_midpt.append(np.mean(rr))

    return np.array(intensity_vs_theta_at_R), theta, radial_midpt
Exemplo n.º 4
0
Arquivo: vmi.py Projeto: stggh/PyAbel
def calculate_speeds(IM, origin=None, Jacobian=False, dr=1, dt=None):
    """ Angular integration of the image.

        Returning the one-dimentional intensity profile as a function of the 
        radial coordinate. 
        
     Parameters
     ----------
     IM : rows x cols 2D np.array
       The data image.

     origin : tuple 
       Image center coordinate relative to *bottom-left* corner
       defaults to (rows//2+rows%2,cols//2+cols%2).

     Jacobian : boolean 
       Include r*sinθ in the angular sum (integration).

     dr : float 
       Radial coordinate grid spacing, in pixels (default 1).

     dt : float
       Theta coordinate grid spacing in degrees, defaults to rows//2.
      
     Returns
     -------
     speeds : 1D np.array 
       Integrated intensity array (vs radius).

      r : 1D np.array 
       radial coordinates

     """

    polarIM, r_grid, theta_grid = reproject_image_into_polar(IM,
                                                             origin,
                                                             Jacobian=Jacobian,
                                                             dr=dr,
                                                             dt=dt)
    theta = theta_grid[0, :]  # theta coordinates
    r = r_grid[:, 0]  # radial coordinates

    if Jacobian:  #  x r sinθ
        sintheta = np.abs(np.sin(theta))
        polarIM = polarIM * sintheta[np.newaxis, :]
        polarIM = polarIM * r[:, np.newaxis]

    speeds = np.sum(polarIM, axis=1)
    n = speeds.shape[0]

    return speeds, r[:n]  # limit radial coordinates range to match speed
Exemplo n.º 5
0
def radial_integration(IM, radial_ranges=None):
    """ Intensity variation in the angular coordinate.

    This function is the :math:`\\theta`-coordinate complement to 
    :func:`abel.tools.vmi.angular_integration`

    (optionally and more useful) returning intensity vs angle for defined
    radial ranges, to evaluate the anisotropy parameter.

    See :doc:`examples/example_O2_PES_PAD.py <examples>`

    Parameters
    ----------
    IM : 2D np.array
        Image data

    radial_ranges : list of tuples
        integration ranges
        ``[(r0, r1), (r2, r3), ...]``
        Evaluate the intensity vs angle
        for the radial ranges ``r0_r1``, ``r2_r3``, etc.

    Returns
    -------
    intensity_vs_theta: 2D np.array
       Intensity vs angle distribution for each selected radial range.

    theta: 1D np.array
       Angle coordinates, referenced to vertical direction.

    """

    polarIM, r_grid, theta_grid = reproject_image_into_polar(IM)

    theta = theta_grid[0, :]  # theta coordinates
    r = r_grid[:, 0]  # radial coordinates

    if radial_ranges is None:
        radial_ranges = [
            (0, r[-1]),
        ]

    intensity_vs_theta_at_R = []
    for rr in radial_ranges:
        subr = np.logical_and(r >= rr[0], r <= rr[1])

        # sum intensity across radius of spectral feature
        intensity_vs_theta_at_R.append(np.sum(polarIM[subr], axis=0))

    return np.array(intensity_vs_theta_at_R), theta
Exemplo n.º 6
0
def radial_integration(IM, radial_ranges=None):
    """ Intensity variation in the angular coordinate.

    This function is the :math:`\\theta`-coordinate complement to 
    :func:`abel.tools.vmi.angular_integration`

    (optionally and more useful) returning intensity vs angle for defined
    radial ranges, to evaluate the anisotropy parameter.

    See :doc:`examples/example_O2_PES_PAD.py <examples>`

    Parameters
    ----------
    IM : 2D np.array
        Image data

    radial_ranges : list of tuples
        integration ranges
        ``[(r0, r1), (r2, r3), ...]``
        Evaluate the intensity vs angle
        for the radial ranges ``r0_r1``, ``r2_r3``, etc.

    Returns
    -------
    intensity_vs_theta: 2D np.array
       Intensity vs angle distribution for each selected radial range.

    theta: 1D np.array
       Angle coordinates, referenced to vertical direction.

    """

    polarIM, r_grid, theta_grid = reproject_image_into_polar(IM)

    theta = theta_grid[0, :]  # theta coordinates
    r = r_grid[:, 0]          # radial coordinates

    if radial_ranges is None:
        radial_ranges = [(0, r[-1]), ]

    intensity_vs_theta_at_R = []
    for rr in radial_ranges:
        subr = np.logical_and(r >= rr[0], r <= rr[1])

        # sum intensity across radius of spectral feature
        intensity_vs_theta_at_R.append(np.sum(polarIM[subr], axis=0))

    return np.array(intensity_vs_theta_at_R), theta
Exemplo n.º 7
0
Arquivo: vmi.py Projeto: stggh/PyAbel
def calculate_speeds(IM, origin=None, Jacobian=False, dr=1, dt=None):
    """ Angular integration of the image.

        Returning the one-dimentional intensity profile as a function of the 
        radial coordinate. 
        
     Parameters
     ----------
     IM : rows x cols 2D np.array
       The data image.

     origin : tuple 
       Image center coordinate relative to *bottom-left* corner
       defaults to (rows//2+rows%2,cols//2+cols%2).

     Jacobian : boolean 
       Include r*sinθ in the angular sum (integration).

     dr : float 
       Radial coordinate grid spacing, in pixels (default 1).

     dt : float
       Theta coordinate grid spacing in degrees, defaults to rows//2.
      
     Returns
     -------
     speeds : 1D np.array 
       Integrated intensity array (vs radius).

      r : 1D np.array 
       radial coordinates

     """

    polarIM, r_grid, theta_grid = reproject_image_into_polar(IM, origin,
                                              Jacobian=Jacobian, dr=dr, dt=dt)
    theta = theta_grid[0, :]   # theta coordinates
    r = r_grid[:, 0]           # radial coordinates

    if Jacobian:   #  x r sinθ    
        sintheta = np.abs(np.sin(theta))
        polarIM = polarIM*sintheta[np.newaxis, :]
        polarIM = polarIM*r[:, np.newaxis]

    speeds = np.sum(polarIM, axis=1)
    n = speeds.shape[0]   

    return speeds, r[:n]   # limit radial coordinates range to match speed
Exemplo n.º 8
0
Arquivo: vmi.py Projeto: stggh/PyAbel
def calculate_angular_distribution(IM, radial_ranges=None):
    """ Intensity variation in the angular coordinate, theta.

    This function is the theta-coordinate complement to 'calculate_speeds(IM)'

    (optionally and more useful) returning intensity vs angle for defined
    radial ranges.

    Parameters
    ----------
    IM : 2D np.array 
     Image data

    radial_ranges : list of tuples
     [(r0, r1), (r2, r3), ...] 
     Evaluate the intensity vs angle for the radial ranges r0_r1, r2_r3, etc. 

    Returns
    --------
    intensity_vs_theta: 2D np.array 
       Intensity vs angle distribution for each selected radial range.

    theta: 1D np.array 
       Angle coordinates, referenced to vertical direction.

    """

    polarIM, r_grid, theta_grid = reproject_image_into_polar(IM)

    theta = theta_grid[0, :]  # theta coordinates
    r = r_grid[:, 0]  # radial coordinates

    if radial_ranges is None:
        radial_ranges = [
            (0, r[-1]),
        ]

    intensity_vs_theta_at_R = []
    for rr in radial_ranges:
        subr = np.logical_and(r >= rr[0], r <= rr[1])

        # sum intensity across radius of spectral feature
        intensity_vs_theta_at_R.append(np.sum(polarIM[subr], axis=0))

    return intensity_vs_theta_at_R, theta
Exemplo n.º 9
0
Arquivo: vmi.py Projeto: stggh/PyAbel
def calculate_angular_distribution(IM, radial_ranges=None):
    """ Intensity variation in the angular coordinate, theta.

    This function is the theta-coordinate complement to 'calculate_speeds(IM)'

    (optionally and more useful) returning intensity vs angle for defined
    radial ranges.

    Parameters
    ----------
    IM : 2D np.array 
     Image data

    radial_ranges : list of tuples
     [(r0, r1), (r2, r3), ...] 
     Evaluate the intensity vs angle for the radial ranges r0_r1, r2_r3, etc. 

    Returns
    --------
    intensity_vs_theta: 2D np.array 
       Intensity vs angle distribution for each selected radial range.

    theta: 1D np.array 
       Angle coordinates, referenced to vertical direction.

    """

    polarIM, r_grid, theta_grid = reproject_image_into_polar(IM)

    theta = theta_grid[0, :]  # theta coordinates
    r = r_grid[:, 0]          # radial coordinates

    if radial_ranges is None:
        radial_ranges = [(0, r[-1]), ]

    intensity_vs_theta_at_R = []
    for rr in radial_ranges:
        subr = np.logical_and(r >= rr[0], r <= rr[1])

        # sum intensity across radius of spectral feature
        intensity_vs_theta_at_R.append(np.sum(polarIM[subr], axis=0))

    return intensity_vs_theta_at_R, theta
Exemplo n.º 10
0
def angular_integration(IM, origin=None, Jacobian=True, dr=1, dt=None):
    r"""Angular integration of the image.

    Returns the one-dimensional intensity profile as a function of the
    radial coordinate.

    Note: the use of ``Jacobian=True`` applies the correct Jacobian for the
    integration of a 3D object in spherical coordinates.

    Parameters
    ----------
    IM : 2D numpy.array
        the image data

    origin : tuple or None
        image origin in the (row, column) format. If ``None``, the geometric
        center of the image (``rows // 2, cols // 2``) is used.

    Jacobian : bool
        Include :math:`r\sin\theta` in the angular sum (integration).
        Also, ``Jacobian=True`` is passed to
        :func:`abel.tools.polar.reproject_image_into_polar`,
        which includes another value of `r`, thus providing the appropriate
        total Jacobian of :math:`r^2\sin\theta`.

    dr : float
        radial grid spacing in pixels (default 1). ``dr=0.5`` may
        reduce pixel granularity of the speed profile.

    dt : float or None
        angular grid spacing in radians.
        If ``None``, the number of theta values will be set to largest
        dimension (the height or the width) of the image, which should
        typically ensure good sampling.

    Returns
    ------
    r : 1D numpy.array
        radial coordinates

    speeds : 1D numpy.array
        integrated intensity array (vs radius).

    """

    polarIM, R, T = reproject_image_into_polar(IM,
                                               origin,
                                               Jacobian=Jacobian,
                                               dr=dr,
                                               dt=dt)

    dt = T[0, 1] - T[0, 0]

    if Jacobian:  # × r sinθ
        polarIM *= R * np.abs(np.sin(T))

    speeds = np.trapz(polarIM, axis=1, dx=dt)

    n = speeds.shape[0]

    return R[:n, 0], speeds  # limit radial coordinates range to match speed
Exemplo n.º 11
0
def radial_integration(IM, origin=None, radial_ranges=None):
    r""" Intensity variation in the angular coordinate.

    This function is the :math:`\theta`-coordinate complement to
    :func:`abel.tools.vmi.angular_integration`.

    Evaluates intensity vs angle for defined radial ranges.
    Determines the anisotropy parameter for each radial range.

    See :doc:`examples/example_O2_PES_PAD.py <example_O2_PES_PAD>`.

    Parameters
    ----------
    IM : 2D numpy.array
        the image data

    origin : tuple or None
        image origin in the (row, column) format. If ``None``, the geometric
        center of the image (``rows // 2, cols // 2``) is used.

    radial_ranges : list of tuple ranges or int step
        tuple
            integration ranges
            ``[(r0, r1), (r2, r3), ...]``
            evaluates the intensity vs angle
            for the radial ranges ``r0_r1``, ``r2_r3``, etc.

        int
            the whole radial range ``(0, step), (step, 2*step), ..``

    Returns
    -------
    Beta : array of tuples
        (beta0, error_beta_fit0), (beta1, error_beta_fit1), ...
        corresponding to the radial ranges

    Amplitude : array of tuples
        (amp0, error_amp_fit0), (amp1, error_amp_fit1), ...
        corresponding to the radial ranges

    Rmidpt : numpy float 1D array
        radial mid-point of each radial range

    Intensity_vs_theta: 2D numpy.array
        intensity vs angle distribution for each selected radial range

    theta: 1D numpy.array
        angle coordinates, referenced to vertical direction
    """
    if origin is not None and not isinstance(origin, tuple):
        _deprecate('radial_integration() has 2nd argument "origin", '
                   'use keyword argument "radial_ranges" or insert "None".')
        radial_ranges = origin
        origin = None

    polarIM, r_grid, theta_grid = reproject_image_into_polar(IM, origin)

    theta = theta_grid[0, :]  # theta coordinates
    r = r_grid[:, 0]  # radial coordinates

    if radial_ranges is None:
        radial_ranges = 1
    if isinstance(radial_ranges, int):
        rr = np.arange(0, r[-1], radial_ranges)
        # @DanHickstein clever code to map ranges
        radial_ranges = list(zip(rr[:-1], rr[1:]))

    Intensity_vs_theta = []
    radial_midpt = []
    Beta = []
    Amp = []
    for rr in radial_ranges:
        subr = np.logical_and(r >= rr[0], r <= rr[1])

        # sum intensity across radius of spectral feature
        intensity_vs_theta_at_R = np.sum(polarIM[subr], axis=0)
        Intensity_vs_theta.append(intensity_vs_theta_at_R)
        radial_midpt.append(np.mean(rr))

        beta, amp = anisotropy_parameter(theta, intensity_vs_theta_at_R)
        Beta.append(beta)
        Amp.append(amp)

    return Beta, Amp, radial_midpt, Intensity_vs_theta, theta
Exemplo n.º 12
0
def radial_integration(IM, radial_ranges=None):
    """ Intensity variation in the angular coordinate.

    This function is the :math:`\\theta`-coordinate complement to
    :func:`abel.tools.vmi.angular_integration`

    Evaluates intensity vs angle for defined radial ranges.
    Determines the anisotropy parameter for each radial range.

    See :doc:`examples/example_PAD.py <examples>`

    Parameters
    ----------
    IM : 2D numpy.array
        Image data

    radial_ranges : list of tuple ranges or int step
        tuple
            integration ranges
            ``[(r0, r1), (r2, r3), ...]``
            evaluates the intensity vs angle
            for the radial ranges ``r0_r1``, ``r2_r3``, etc.

        int
            the whole radial range ``(0, step), (step, 2*step), ..``

    Returns
    -------
    Beta : array of tuples
        (beta0, error_beta_fit0), (beta1, error_beta_fit1), ...
        corresponding to the radial ranges

    Amplitude : array of tuples
        (amp0, error_amp_fit0), (amp1, error_amp_fit1), ...
        corresponding to the radial ranges

    Rmidpt : numpy float 1d array
        radial-mid point of each radial range

    Intensity_vs_theta: 2D numpy.array
       Intensity vs angle distribution for each selected radial range.

    theta: 1D numpy.array
       Angle coordinates, referenced to vertical direction.


    """

    polarIM, r_grid, theta_grid = reproject_image_into_polar(IM)

    theta = theta_grid[0, :]  # theta coordinates
    r = r_grid[:, 0]          # radial coordinates

    if radial_ranges is None:
        radial_ranges = 1
    if isinstance(radial_ranges, int):
        rr = np.arange(0, r[-1], radial_ranges)
        # @DanHickstein clever code to map ranges
        radial_ranges = list(zip(rr[:-1], rr[1:]))

    Intensity_vs_theta = []
    radial_midpt = []
    Beta = []
    Amp = []
    for rr in radial_ranges:
        subr = np.logical_and(r >= rr[0], r <= rr[1])

        # sum intensity across radius of spectral feature
        intensity_vs_theta_at_R = np.sum(polarIM[subr], axis=0)
        Intensity_vs_theta.append(intensity_vs_theta_at_R)
        radial_midpt.append(np.mean(rr))

        beta, amp = anisotropy_parameter(theta, intensity_vs_theta_at_R)
        Beta.append(beta)
        Amp.append(amp)

    return Beta, Amp, radial_midpt, Intensity_vs_theta, theta
Exemplo n.º 13
0
def radial_integration(IM, radial_ranges=None):
    """ Intensity variation in the angular coordinate.

    This function is the :math:`\\theta`-coordinate complement to
    :func:`abel.tools.vmi.angular_integration`

    Evaluates intensity vs angle for defined radial ranges.
    Determines the anisotropy parameter for each radial range.

    See :doc:`examples/example_PAD.py <examples>`

    Parameters
    ----------
    IM : 2D numpy.array
        Image data

    radial_ranges : list of tuple ranges or int step
        tuple
            integration ranges
            ``[(r0, r1), (r2, r3), ...]``
            evaluates the intensity vs angle
            for the radial ranges ``r0_r1``, ``r2_r3``, etc.

        int
            the whole radial range ``(0, step), (step, 2*step), ..``

    Returns
    -------
    Beta : array of tuples
        (beta0, error_beta_fit0), (beta1, error_beta_fit1), ...
        corresponding to the radial ranges

    Amplitude : array of tuples
        (amp0, error_amp_fit0), (amp1, error_amp_fit1), ...
        corresponding to the radial ranges

    Rmidpt : numpy float 1d array
        radial-mid point of each radial range

    Intensity_vs_theta: 2D numpy.array
       Intensity vs angle distribution for each selected radial range.

    theta: 1D numpy.array
       Angle coordinates, referenced to vertical direction.


    """

    polarIM, r_grid, theta_grid = reproject_image_into_polar(IM)

    theta = theta_grid[0, :]  # theta coordinates
    r = r_grid[:, 0]  # radial coordinates

    if radial_ranges is None:
        radial_ranges = 1
    if isinstance(radial_ranges, int):
        rr = np.arange(0, r[-1], radial_ranges)
        # @DanHickstein clever code to map ranges
        radial_ranges = list(zip(rr[:-1], rr[1:]))

    Intensity_vs_theta = []
    radial_midpt = []
    Beta = []
    Amp = []
    for rr in radial_ranges:
        subr = np.logical_and(r >= rr[0], r <= rr[1])

        # sum intensity across radius of spectral feature
        intensity_vs_theta_at_R = np.sum(polarIM[subr], axis=0)
        Intensity_vs_theta.append(intensity_vs_theta_at_R)
        radial_midpt.append(np.mean(rr))

        beta, amp = anisotropy_parameter(theta, intensity_vs_theta_at_R)
        Beta.append(beta)
        Amp.append(amp)

    return Beta, Amp, radial_midpt, Intensity_vs_theta, theta