Exemplo n.º 1
0

   gfile = abf.ABFileGrid("regional.grid","r")
   scpx=gfile.read_field("scpx")
   scpy=gfile.read_field("scpy")
   plon=gfile.read_field("plon")
   plat=gfile.read_field("plat")
   #

   lons=plon
   lats=plat

   #----------------- read from ab file 
   #---- ERAI TRIP
   file_TRIP_river=args.Trip_river_afile
   afile_trip = abf.AFile(800,760,file_TRIP_river,"r")
    # compute monthly flux:
   Greenland_trip_discharge_month = np.NaN * np.ones([12,])
   Greenland_trip_riverflux=np.zeros((12,760,800))
   Green_trip_total_riverflux=np.zeros(lons.shape)
   countr=0
   for record in range(12) :
      trp_fld = afile_trip.read_record(record)
      Gr_trp_fld=greenlandmask(trp_fld,lats,lons)
      Greenland_trip_riverflux[record,:,:]=Gr_trp_fld
      ## convert from m^3/s km^3/year
      Gr_trp_fld=Gr_trp_fld*(365*86400.)*1e-9/12
      Greenland_trip_discharge_month[record] = np.nansum(Gr_trp_fld*scpx*scpy)
      Green_trip_total_riverflux=Green_trip_total_riverflux+Gr_trp_fld*scpx*scpy
      countr=countr+1
Exemplo n.º 2
0
def main(path, source_file):
    print(path)
    print(source_file)
    nc = NetCDFFile(source_file, "r")
    wetNOy = nc.variables["WDEP_NOy"][:, :]
    wetNHx = nc.variables["WDEP_NHx"][:, :]
    dryNOy = nc.variables["DDEP_NOy_m2Grid"][:, :]
    dryNHx = nc.variables["DDEP_NHx_m2Grid"][:, :]
    lat = nc.variables["lat"][:]
    lon = nc.variables["lon"][:]
    Nread = wetNOy + wetNHx + dryNOy + dryNHx

    abgrid = abf.ABFileGrid(path + "../../../topo/regional.grid", "r")
    plon = abgrid.read_field("plon")
    plat = abgrid.read_field("plat")
    jdm, idm = plon.shape

    xi, yi = np.meshgrid(lon, lat)
    N = griddata((xi.flatten(), yi.flatten()),
                 Nread.flatten(), (plon, plat),
                 method='linear')
    N[np.isnan(N)] = 0.
    N = N / 365. / 86400.  # year --> second
    N = N / 14.01 * 6.625 * 12.01  # mgN m-2 s-1 --> mgC m-2 s-1


    outfile=abf.ABFileRiver(path + "ECO_no3_new.a","w",idm=idm,jdm=jdm,\
                   cline1='River nitrate fluxes + Atmospheric N deposition',\
                   cline2='mgC m-2 s-1')
    outfile.write_header()
    Nriver = abf.AFile(idm, jdm, path + "ECO_no3.a", "r")

    for month in range(12):
        river = Nriver.read_record(month)
        outfile.write_field(river + N, None, "river nitrate", month + 1)

    Nriver.close()
    outfile.close()

    origAfile = path + "ECO_no3.a"
    origBfile = path + "ECO_no3.b"
    oldAfile = path + "ECO_no3_noATM.a"
    oldBfile = path + "ECO_no3_noATM.b"
    newAfile = path + "ECO_no3_new.a"
    newBfile = path + "ECO_no3_new.b"

    os.rename(origAfile, oldAfile
              )  # river without atmpspheric deposition is kept as noATM file.
    os.rename(origBfile, oldBfile
              )  # river without atmpspheric deposition is kept as noATM file.
    os.rename(
        newAfile, origAfile
    )  # river with atmospheric deposition is renamed to the original file used by hycom
    os.rename(
        newBfile, origBfile
    )  # river with atmospheric deposition is renamed to the original file used by hycom

    # according to Okin et al, 2011 - doi:10.1029/2010GB003858
    # for North Atlantic (northern section)
    # Ndep = 7.4 TgN/yr
    # Pdep = 0.02 TgP/yr
    # ratio --> ( 7.4 / 14.01 * 6.625 ) / ( 0.02 / 31. * 106. ) = 51.2
    P = N / 51.2

    outfile=abf.ABFileRiver(path + "ECO_pho_new.a","w",idm=idm,jdm=jdm,\
                   cline1='River phosphate fluxes + Atmospheric P deposition',\
                   cline2='mgC m-2 s-1')
    outfile.write_header()
    Priver = abf.AFile(idm, jdm, path + "ECO_pho.a", "r")

    for month in range(12):
        river = Priver.read_record(month)
        outfile.write_field(river + P, None, "river phosphate", month + 1)

    Priver.close()
    outfile.close()

    origAfile = path + "ECO_pho.a"
    origBfile = path + "ECO_pho.b"
    oldAfile = path + "ECO_pho_noATM.a"
    oldBfile = path + "ECO_pho_noATM.b"
    newAfile = path + "ECO_pho_new.a"
    newBfile = path + "ECO_pho_new.b"

    os.rename(origAfile, oldAfile
              )  # river without atmpspheric deposition is kept as noATM file.
    os.rename(origBfile, oldBfile
              )  # river without atmpspheric deposition is kept as noATM file.
    os.rename(
        newAfile, origAfile
    )  # river with atmospheric deposition is renamed to the original file used by hycom
    os.rename(
        newBfile, origBfile
    )  # river with atmospheric deposition is renamed to the original file used by hycom
    '''
Exemplo n.º 3
0
def main():

    # Read plon,plat
    gfile = abf.ABFileGrid("regional.grid", "r")
    plon = gfile.read_field("plon")
    plat = gfile.read_field("plat")
    gfile.close()

    # Read input bathymetry
    bfile = abf.ABFileBathy("regional.depth",
                            "r",
                            idm=gfile.idm,
                            jdm=gfile.jdm,
                            mask=True)
    in_depth_m = bfile.read_field("depth")
    bfile.close()
    #in_depth=numpy.ma.filled(in_depth_m,bathy_threshold)

    # Starting point  (State 1 for Atlantic)
    kapref = numpy.ones(plat.shape) * 1.0
    print kapref.min(), kapref.max()

    # Find regions north of northern limit. Assumes
    for segment in range(len(northern_limit_longitudes)):

        ind1 = segment
        ind2 = (segment + 1) % len(northern_limit_longitudes)

        lo1 = northern_limit_longitudes[ind1]
        la1 = northern_limit_latitudes[ind1]
        lo2 = northern_limit_longitudes[ind2]
        la2 = northern_limit_latitudes[ind2]

        tmp1 = numpy.mod(plon + 360 - lo1, 360.)
        tmp2 = numpy.mod(lo2 + 360 - lo1, 360.)
        J = tmp1 <= tmp2
        #print numpy.count_nonzero(J)

        # Linear weights and latitude in selected points
        w2 = tmp1 / tmp2
        w1 = 1. - w2
        la = la2 * w2 + la1 * w1

        kapref[J] = numpy.where(plat[J] > la[J], 2.0, kapref[J])

    import scipy.ndimage
    kapref = scipy.ndimage.gaussian_filter(kapref, sigma=20)

    #print in_depth_m.min(),type(in_depth_m)
    kaprefplot = numpy.ma.masked_where(in_depth_m.mask, kapref)
    figure = matplotlib.pyplot.figure()
    ax = figure.add_subplot(111)
    P = ax.pcolormesh(kaprefplot)
    figure.colorbar(P, ax=ax)
    figure.canvas.print_figure("kapref.png")

    af = abf.AFile(plon.shape[1], plon.shape[0], "tbaric.a", "w")
    hmin, hmax = af.writerecord(kapref, None, record=0)
    af.close()
    bf = open("tbaric.b", "w")
    bf.write("tbaric.b\n")
    bf.write("\n")
    bf.write("\n")
    bf.write("\n")
    bf.write("i/jdm =  %5d %5d\n" % (plon.shape[1], plon.shape[0]))
    bf.write("tbaric: range = %14.6e%14.6e\n" % (hmin, hmax))
    bf.close()
def main(lon1,lat1,lon2,lat2,variable,files,filetype="archive",clim=None,sectionid="",
      ijspace=False,xaxis="distance",section_map=False,dpi=180) :
   TP4Grd='/cluster/work/users/aal069/TP4a0.12/mfile/'
   logger.info("Filetype is %s"% filetype)
   gfile = abf.ABFileGrid("regional.grid","r")
   plon=gfile.read_field("plon")
   plat=gfile.read_field("plat")


   # Set up section info
   if ijspace :
      sec = gridxsec.SectionIJSpace([lon1,lon2],[lat1,lat2],plon,plat)
   else  :
      sec = gridxsec.Section([lon1,lon2],[lat1,lat2],plon,plat)
   I,J=sec.grid_indexes
   dist=sec.distance
   print('dit.shae=',dist.shape)
   slon=sec.longitude
   slat=sec.latitude
   # In testing
   #J,I,slon,slat,case,dist=sec.find_intersection(qlon,qlat)
   #print I,J
   #raise NameError,"test"

   logger.info("Min max I-index (starts from 0):%d %d"%(I.min(),I.max()))
   logger.info("Min max J-index (starts from 0):%d %d"%(J.min(),J.max()))
   #
   #
   if section_map :
      ll_lon=slon.min()-10.
      ur_lon=slon.max()+10.
      ll_lat=np.maximum(-90.,slat.min()-10.)
      ur_lat=np.minimum(90. ,slat.max()+10.)

      proj=ccrs.Stereographic(central_latitude=90.0,central_longitude=-40.0)
      #pxy = proj.transform_points(ccrs.PlateCarree(), plon, plat)
      #px=pxy[:,:,0]
      #py=pxy[:,:,1]
      #x,y=np.meshgrid(np.arange(slon.shape[0]),np.arange(slat.shape[0]))
        
      figure =plt.figure(figsize=(8,8))
      ax=figure.add_subplot(111,projection=proj)
      #ax = plt.axes(projection=ccrs.PlateCarree())
      ax.set_extent([-179, 179, 53, 85],ccrs.PlateCarree())
      #ax = plt.axes(projection=ccrs.Stereographic())
      ax.add_feature(cfeature.GSHHSFeature('auto', edgecolor='grey'))
      ax.add_feature(cfeature.GSHHSFeature('auto', facecolor='grey'))
      ax.gridlines()
      #ax.coastlines(resolution='110m')
      ax.plot(slon,slat,"r-",lw=1,transform=ccrs.PlateCarree())
      
      pos = ax.get_position()
      asp=pos.height/pos.width
      w=figure.get_figwidth()
      h=asp*w
      figure.set_figheight(h)
      if sectionid :
         figure.canvas.print_figure("map_%s.png"%sectionid,dpi=dpi,bbox_inches='tight')
      else :
         figure.canvas.print_figure("map.png",dpi=dpi,bbox_inches='tight')

   # Get layer thickness variable used in hycom
   dpname = modeltools.hycom.layer_thickness_variable[filetype]
   logger.info("Filetype %s: layer thickness variable is %s"%(filetype,dpname))


   if xaxis == "distance" :
      x=dist/1000.
      xlab="Distance along section[km]"
   elif xaxis == "i" :
      x=I
      xlab="i-index"
   elif xaxis == "j" :
      x=J
      xlab="j-index"
   elif xaxis == "lon" :
      x=slon
      xlab="longitude"
   elif xaxis == "lat" :
      x=slat
      xlab="latitude"
   else :
      logger.warning("xaxis must be i,j,lo,lat or distance")
      x=dist/1000.
      xlab="Distance along section[km]"

   # get kdm from the first file:
   # Remove [ab] ending if present
   myfile0=files[0]
   print( 'myfile0', myfile0)

   m=re.match("(.*)\.[ab]",myfile0)
   print('m=',m.group(1))
   if m :
      myfile=m.group(1)
   else :
      myfile=myfile0
   dta_afile = abf.AFile(gfile.idm,gfile.jdm,myfile0,"r")
   #intfl='../../../relax/010/relax_int.a'
   intfl=myfile[:-3] + 'int.a'
   int_afile = abf.AFile(gfile.idm,gfile.jdm,intfl,"r")
   #
   lyr=1
   #record_num,xmn,xmx=dta_afile.get_record_number(variable,lyr)
   #print 'record_num, variable, layer ===', record_num-1, variable, lyr
   #print 'mn,mx=',xmn,xmx
   # for record in record_num :
   record_num=1
   record_var=record_num-1 
   fld = dta_afile.read_record(record_var)
   print('mn,mx  data=',fld.min(),fld.max())
   #np.testing.assert_approx_equal(xmn,fld.min(),significant=8)
   #np.testing.assert_approx_equal(xmx,fld.max(),significant=8)
   # presure interfc
   #record_num,xmn,xmx=int_afile.get_record_number('int',lyr)
   #print 'record_num, variable, layer ===', record_num-1, 'int', lyr
   #print 'mn,mx=',xmn,xmx
   # for record in record_num :
   record_prs=record_num-1 
   fld = int_afile.read_record(record_prs)
   print('mn,mx  intface=',fld.min(),fld.max())
   #np.testing.assert_approx_equal(xmn,fld.min(),significant=8)
   #np.testing.assert_approx_equal(xmx,fld.max(),significant=8)
   #
   #kdm=max(fi_abfile.fieldlevels)
   kdm=50
   # Loop over archive files
   figure = plt.figure()
   ax=figure.add_subplot(111)
   pos = ax.get_position()
   count_sum=0
   intfsec_sum=np.zeros((kdm+1,I.size))
   datasec_sum=np.zeros((kdm+1,I.size))
   #
   for mnth in range(12) :
      count_sum=count_sum+1

      logger.info("Reading data and presure interface for month %s"%(mnth+1))
      record_var_pnt=record_var + mnth*kdm
      record_prs_pnt=record_prs + mnth*kdm
      print('pointing at record num:  record_var_pnt', record_var_pnt)
      print('pointing at record num:  record_prs_pnt', record_prs_pnt)
      # Set up interface and daat arrays
      xx=np.zeros((kdm+1,I.size))
      intfsec=np.zeros((kdm+1,I.size))
      datasec=np.zeros((kdm+1,I.size))
      # Loop over layers in file. 
      logger.info("File %s"%(myfile))
      logger.info("intfac_File %s"%(intfl))
      #loop over 50 records
      for k in range(kdm) :
         logger.debug("File %s, layer %03d/%03d"%(myfile,k,kdm))
         r_var=record_var_pnt+k
         r_prs=record_prs_pnt+k
         # Get 2D fields
         dp2d = int_afile.read_record(r_prs)
         data2d=dta_afile.read_record(r_var)
         #print('reading rec num: r_var,r_dp=', r_var, r_prs,' ','data.min,data.max=',data2d.min(),data2d.max())
         print('data: month,layer, range', (mnth+1),'',(r_var)%kdm,data2d.min(),data2d.max())
         #dp2d=i_abfile.read_field(dpname,k+1)
         #data2d=i_abfile.read_field(variable,k+1)
         if ((r_var)%kdm==49):
            print('mn,mx  intface=',dp2d.min(),dp2d.max())
            print('mn,mx  data=',  data2d.min(),data2d.max())
            print( "Reach bottom layer" )
         dp2d=np.ma.filled(dp2d,0.)/modeltools.hycom.onem
         data2d=np.ma.filled(data2d,1e30)

         # Place data into section arrays
         #intfsec[k+1,:] = intfsec[k,:] + dp2d[J,I]
         #print("data2d.shape=",data2d.shape)
         #print("data2d[J,I].size=",data2d[J,I].size)
         intfsec[k+1,:] = dp2d[J,I]
         if k==0 : datasec[k,:] = data2d[J,I]
         datasec[k+1,:] = data2d[J,I]
      

      intfsec_sum=intfsec_sum + intfsec
      datasec_sum=datasec_sum + datasec
      #print 'prs_intafce=', np.transpose(intfsec[:,15]) 
     
   dta_afile.close()
   int_afile.close()
      # end loop over files

   print ('count_sum=',count_sum)
   intfsec_avg=intfsec_sum/count_sum
   datasec_avg=datasec_sum/count_sum
   #
   i_maxd=np.argmax(np.abs(intfsec_avg[kdm,:]))
   #print i_maxd
   for k in range(kdm+1) :
      xx[k,:] = x[:]
   # Set up section plot
   #datasec = np.ma.masked_where(datasec==1e30,datasec)
   datasec_avg = np.ma.masked_where(datasec_avg>0.5*1e30,datasec_avg)
   #print datasec.min(),datasec.max()
   #P=ax.pcolormesh(dist/1000.,-intfsec,datasec)
   #print i_maxd
   for k in range(kdm+1) :
      xx[k,:] = x[:]
   
   if clim is not None : lvls = MaxNLocator(nbins=30).tick_values(clim[0], clim[1])
   #print 'levels=', lvls
   mf='sawtooth_0-1.txt'
   LinDic=mod_hyc2plot.cmap_dict(mf)
   my_cmap = matplotlib.colors.LinearSegmentedColormap('my_colormap',LinDic)
   cmap=my_cmap
   #cmap = plt.get_cmap('gist_rainbow_r')
   norm = BoundaryNorm(lvls, ncolors=cmap.N, clip=True)
   print('x.shape=' ,      x.shape)
   print('x.min,xmax=' ,  x.min(),x.max())
   print('xx.shape=' ,      xx.shape)
   print('xx.min,xxmax=' ,  xx.min(),xx.max())
   print('intfsec_avg.shape=', intfsec_avg.shape)
   print('datasec_avg.shape=', datasec_avg.shape)
   #P=ax.pcolormesh(x,-intfsec,datasec,cmap=cmap)
   P=ax.contourf(xx,-intfsec_avg,datasec_avg,extend='both',cmap=cmap,levels=lvls)
   if 'sal' in variable:
      P1=ax.contour(xx,-intfsec_avg,datasec_avg,levels=[32.0,33.0,34.0,35.0,35.5],
          colors=('k',),linestyles=('-',),linewidths=(1.5,))
   else:
      P1=ax.contour(xx,-intfsec_avg,datasec_avg,levels=[-1.0,0.0,2.0],
          colors=('k',),linestyles=('-',),linewidths=(1.5,))
   plt.clabel(P1, fmt = '%2.1d', colors = 'k', fontsize=10) #contour line labels
   # Plot layer interfaces
   for k in range(1,kdm+1) :
      if k%100 == 0 : 
         PL=ax.plot(x,-intfsec_avg[k,:],"-",color="k")
      elif k%5 == 0 and k <= 10: 
         PL=ax.plot(x,-intfsec_avg[k,:],"--",color="k", linewidth=0.5)
         textx = x[i_maxd]
         texty = -0.5*(intfsec_avg[k-1,i_maxd] + intfsec_avg[k,i_maxd])
         ax.text(textx,texty,str(k),verticalalignment="center",horizontalalignment="center",fontsize=6)
      elif k%2 == 0 and k > 10: 
         PL=ax.plot(x,-intfsec_avg[k,:],"--",color="k", linewidth=0.5)
         textx = x[i_maxd]
         texty = -0.5*(intfsec_avg[k-1,i_maxd] + intfsec_avg[k,i_maxd])
         ax.text(textx,texty,str(k),verticalalignment="center",horizontalalignment="center",fontsize=6)
###    else :
###       PL=ax.plot(x,-intfsec_avg[k,:],"-",color=".5")
  # Print figure and remove wite space.
   aspect = 50
   pad_fraction = 0.25
   divider = make_axes_locatable(ax)
   width = axes_size.AxesY(ax, aspect=1./aspect)
   pad = axes_size.Fraction(pad_fraction, width)
   cax = divider.append_axes("right", size=width, pad=pad)
   cb=ax.figure.colorbar(P,cax=cax,extend='both')
   #cb=ax.figure.colorbar(P,extend='both')
   if clim is not None : P.set_clim(clim)
   #cb=ax.figure.colorbar(P,extend='both')
   ax.set_title(variable+':'+myfile+'AVG-')
   ax.set_ylabel('Depth [m]')
   ax.set_xlabel(xlab)
   #ax.set_position(pos)
   #plt.tight_layout()

   # Print in different y-lims 
   suff=os.path.basename(myfile)
   if sectionid : suff=suff+"_"+sectionid
   figure.canvas.print_figure("sec_AVG_%s_full_%s.png"%(variable,suff),dpi=dpi)
   if 'Fram' in sectionid or 'Svin' in sectionid:
      ax.set_ylim(-600,0)
      figure.canvas.print_figure("sec_AVG_%s_600m_%s.png"%(variable,suff),dpi=dpi)
   else :
      ax.set_ylim(-3000,0)
      figure.canvas.print_figure("sec_AVG_%s_3000m_%s.png"%(variable,suff),dpi=dpi)
      #ax.set_ylim(-600,0)
      #figure.canvas.print_figure("sec_AVG_%s_600m_%s.png"%(variable,suff),dpi=dpi)

   # Close input file
   #i_abfile.close()
   #
   ax.clear()
   cb.remove()
Exemplo n.º 5
0
def main(myfiles,
         fieldname,
         fieldlevel,
         idm=None,
         jdm=None,
         clim=None,
         filetype="archive",
         window=None,
         cmap="jet",
         datetime1=None,
         datetime2=None,
         vector="",
         tokml=False,
         masklim=None,
         filename2='',
         dpi=180):

    cmap = matplotlib.pyplot.get_cmap("jet")

    ab = abf.ABFileGrid("regional.grid", "r")
    plon = ab.read_field("plon")
    plat = ab.read_field("plat")
    scpx = ab.read_field("scpx")
    scpy = ab.read_field("scpy")
    target_lonlats = [plon, plat]
    abdpth = abf.ABFileBathy('regional.depth', "r", idm=ab.idm, jdm=ab.jdm)
    mdpth = abdpth.read_field('depth')
    maskd = mdpth.data
    maskd[maskd > 1e29] = np.nan
    #Region_mask=True
    Region_mask = False
    if Region_mask:
        maskd[plat > 80] = np.nan
        maskd[plat < 50] = np.nan
        maskd[plon > 60] = np.nan
        maskd[plon < -50] = np.nan

    Nordic_mask = maskd

    proj = ccrs.Stereographic(central_latitude=90.0, central_longitude=-40.0)
    pxy = proj.transform_points(ccrs.PlateCarree(), plon, plat)
    px = pxy[:, :, 0]
    py = pxy[:, :, 1]
    x, y = np.meshgrid(np.arange(plon.shape[1]), np.arange(plon.shape[0]))

    if vector:
        logger.info("Vector component 1:%s" % fieldname)
        logger.info("Vector component 2:%s" % vector)

    #---------------first read and compute clim
    Err_map = 1
    freezp = -1.8
    sum_fld1 = maskd
    sum_fld1[~np.isnan(sum_fld1)] = 0.0
    Clim_arr = np.zeros((plon.shape[0], plon.shape[1], 12))
    #---------------
    # compute for TP6 files
    #-----------------------------------------
    #---------------------------------------------------------------------------------
    #---------------------------------------------------------------------------------
    # filename2
    onemm = 9.806
    counter = 0
    file_count = 0
    sum_fld1 = maskd
    sum_fld1[~np.isnan(sum_fld1)] = 0.0
    dt_cnl = np.zeros(len(myfiles))
    diff_dt_cnl = np.zeros(len(myfiles))
    rmse_dt_cnl = np.zeros(len(myfiles))

    Labl1 = "CNTL SST"
    Labl1 = myfiles[0][:28]
    yyyy1 = myfiles[0][-9:-5]
    if "archv." in myfiles[0]:
        yyyy1 = myfiles[0][-13:-9]
    print("myfiles[0]=", myfiles[0])
    print("yyy1=", yyyy1)
    if filename2:
        dt_2 = np.zeros(len(filename2))
        diff_dt_2 = np.zeros(len(filename2))
        rmse_dt_2 = np.zeros(len(filename2))
        tid_2=np.array([datetime.datetime(int(yyyy1), 1, 15) \
           + relativedelta(months=i) for i in range(len(filename2))])
        Labl2 = filename2[0][:28]
        counter = 0
        file_count = 0
        sum_fld1 = maskd
        sum_fld1[~np.isnan(sum_fld1)] = 0.0
        if "srfhgt" in fieldname:
            fieldname = "srfhgt"
        elif "temp" in fieldname:
            fieldname = "temp"
        for fil0 in filename2:
            logger.info("Now processing  %s" % fil0)
            n_intloop,ab,ab2,rdtimes = open_file(fil0,filetype,fieldname,fieldlevel,\
                 datetime1=datetime1,datetime2=datetime2,vector=vector,idm=idm,jdm=jdm)
            # Intloop used to read more fields in one file. Only for forcing for now
            for i_intloop in range(n_intloop):
                # Read ab file of different types
                if filetype == "archive":
                    fld1 = ab.read_field(fieldname, fieldlevel)
                elif filetype == "forcing":
                    fld1 = ab.read_field(fieldname, rdtimes[i_intloop])
                    if vector:
                        fld2 = ab2.read_field(vector, rdtimes[i_intloop])
                    logger.info("Processing time %.2f" % rdtimes[i_intloop])
                else:
                    raise NotImplementedError("Filetype %s not implemented" %
                                              filetype)
                # Create scalar field for vectors
                print('---------mn,mx  data=', fld1.min(), fld1.max())
                #if "srfhgt" in fieldname:
                #   fld1= fld1/9.806
                print("fld1.shpe", fld1.shape)
                print('mn,mx=', fld1.min(), fld1.max(), 'count=', counter)
                dt_2[counter] = np.nanmean(fld1)
                counter = counter + 1
                sum_fld1 = sum_fld1 + fld1
                del fld1
    #---------------------------------------------------------------------------------
    #---------------------------------------------------------------------------------
    base = datetime.datetime(int(yyyy1), 1, 15)
    tid = np.array(
        [base + relativedelta(months=i) for i in range(len(myfiles))])
    if "archv." in myfiles[0]:
        tid = np.array(
            [base + relativedelta(days=i) for i in range(len(myfiles))])
    nmexp = 1
    if filename2:
        nmexp = nmexp + 1
    print(
        'processing data from No runs ==##############>>>>>>>>>>>>>>>>>>>>>>>',
        nmexp)
    whole_domain = True
    whole_domain = False
    #
    counter = 0
    file_count = 0
    sum_fld1 = maskd
    sum_fld1[~np.isnan(sum_fld1)] = 0.0
    logger.info(
        ">>>>>--------------------------Processing the first files=  myfiles")
    for myfile0 in myfiles:
        logger.info("Now processing  %s" % myfile0)
        n_intloop,ab,ab2,rdtimes = open_file(myfile0,filetype,fieldname,fieldlevel,\
             datetime1=datetime1,datetime2=datetime2,vector=vector,idm=idm,jdm=jdm)
        # Intloop used to read more fields in one file. Only for forcing for now
        for i_intloop in range(n_intloop):
            # Read ab file of different types
            if filetype == "archive":
                fld1 = ab.read_field(fieldname, fieldlevel)
                if ('temp' in fieldname) and whole_domain:
                    vert_fld_sum = 0
                    for lvl in range(50):
                        print('lvl=', lvl, fieldlevel)
                        fld_lvl = ab.read_field(fieldname, lvl + 1)
                        vert_fld_sum = vert_fld_sum + np.nanmean(fld_lvl)
                    vert_fld_avg = vert_fld_sum / 50.0

            elif filetype == "forcing":
                fld1 = ab.read_field(fieldname, rdtimes[i_intloop])
                if vector: fld2 = ab2.read_field(vector, rdtimes[i_intloop])
                logger.info("Processing time %.2f" % rdtimes[i_intloop])
            else:
                raise NotImplementedError("Filetype %s not implemented" %
                                          filetype)
            # Create scalar field for vectors
            print('---------mn,mx  data=', fld1.min(), fld1.max())
            #if "srfhgt" in fieldname:
            #   fld1= fld1/9.806
            print("fld1.shpe", fld1.shape)
            print('mn,mx=', fld1.min(), fld1.max(), 'count=', counter)
            if ('temp' in fieldname) and whole_domain:
                dt_cnl[counter] = vert_fld_avg
            else:
                dt_cnl[counter] = np.nanmean(fld1)
            counter = counter + 1
            sum_fld1 = sum_fld1 + fld1
            del fld1
            # End i_intloop
        print('Computing the avearge of file_counter= ', file_count,
              'counter=', counter)
    #---------------------------------------
    #---------------------------------------
    #plot_climatology
    Clim_arr = np.zeros((plon.shape[0], plon.shape[1], 12))
    if 'tem' in fieldname:
        counter = 0
        rlxfile0 = "/cluster/work/users/achoth/TP5a0.06/relax/050/relax_tem.a"
        rlx_afile = abf.AFile(ab.idm, ab.jdm, rlxfile0, "r")
        lyr = fieldlevel
        record_num = lyr
        record_var = record_num - 1
        fld = rlx_afile.read_record(record_var)
        print('mn,mx  data=', fld.min(), fld.max())
        kdm = 50
        dt_clim = np.zeros(12)
        for mnth in range(12):
            fld1 = rlx_afile.read_record(mnth * kdm + lyr - 1)
            logger.debug("File %s, record_var/mnth*kdm %03d/%03d" %
                         (rlxfile0, record_var, mnth * kdm))
            print('record, mn,mx  data=', kdm * mnth, fld1.min(), fld1.max())
            print('record, mn,mx  data=', kdm * mnth, fld1.min(), fld1.max())
            # Intloop used to read more fields in one file. Only for forcing for now
            dt_clim[mnth] = np.nanmean(fld1)
            #Clim_arr[:,:,mnth]=fld1[:,:]
            counter = counter + 1
            print('counter=', counter)
            del fld1
        #
        tid_clim = np.array(
            [base + relativedelta(months=i) for i in range(12)])
        #figure, ax = matplotlib.pyplot.figure()
        rpt = len(dt_cnl) / 12
        dt_clim_cat = dt_clim
        for ii in range(int(rpt - 1)):
            print("concatenate ")
            dt_clim_cat = np.concatenate([dt_clim_cat, dt_clim])
    #
    #---------------------------------------
    #---------------------------------------
    figure, ax = plt.subplots()
    years = YearLocator()  # every year
    months = MonthLocator()  # every month
    yearsFmt = DateFormatter('%Y')
    #ax=figure.add_subplot(111)
    nplts = 1
    ax.plot_date(tid, dt_cnl, '-o', color='g', ms=3, label=Labl1)
    if 'tem' in fieldname:
        ax.plot_date(tid[0:len(dt_cnl)],
                     dt_clim_cat[:],
                     ':',
                     color='black',
                     label='Phc-Clim.')
    if filename2:
        ax.plot_date(tid_2, dt_2, '-v', color='orange', ms=3, label=Labl2)
    ax.xaxis.set_major_locator(years)
    ax.xaxis.set_major_formatter(yearsFmt)
    ax.xaxis.set_minor_locator(months)
    ax.autoscale_view()

    # format the coords message box
    def price(x):
        return '$%1.2f' % x

    ax.fmt_xdata = DateFormatter('%Y-%m-%d')
    ax.fmt_ydata = price
    ax.grid(True)
    figure.autofmt_xdate()
    legend = plt.legend(loc='upper left', fontsize=8)
    plt.title("Area-averaged: %s(%d)" % (fieldname, fieldlevel))
    plt.ylabel("%s(%d)" % (fieldname, fieldlevel))

    if "k.e" in fieldname:
        fieldname = "KE"
    if "u-vel" in fieldname:
        fieldname = "u-vel"
    ts_fil = "Time_series_cntl%s_%02d_%02d" % (fieldname, fieldlevel, counter)
    if Region_mask:
        ts_fil = 'Region_' + ts_fil
    figure.canvas.print_figure(ts_fil, bbox_inches='tight', dpi=dpi)
    logger.info("Successfull printing:  %s" % ts_fil)
def main(myfiles,
         fieldname,
         fieldlevel,
         idm=None,
         jdm=None,
         clim=None,
         filetype="archive",
         window=None,
         cmap="jet",
         datetime1=None,
         datetime2=None,
         vector="",
         tokml=False,
         masklim=None,
         filename2='',
         filename5='',
         dpi=180):

    LinDic = mod_hyc2plot.cmap_dict('sawtooth_fc100.txt')
    if 'temp' or 'sal' in fieldname:
        cmap = matplotlib.colors.LinearSegmentedColormap('my_colormap', LinDic)
    else:
        cmap = matplotlib.colors.LinearSegmentedColormap('my_colormap', LinDic)
    if tokml:
        ab = abf.ABFileGrid("regional.grid", "r")
        plon = ab.read_field("plon")
        plat = ab.read_field("plat")
        ab.close()

    ab = abf.ABFileGrid("regional.grid", "r")
    plon = ab.read_field("plon")
    plat = ab.read_field("plat")
    scpx = ab.read_field("scpx")
    scpy = ab.read_field("scpy")
    target_lonlats = [plon, plat]
    abdpth = abf.ABFileBathy('regional.depth', "r", idm=ab.idm, jdm=ab.jdm)
    mdpth = abdpth.read_field('depth')
    maskd = mdpth.data
    maskd[maskd > 1e29] = np.nan
    Region_mask = True
    Region_mask = False
    if Region_mask:
        maskd[plat > 70] = np.nan
        #maskd[plat<50]=np.nan
        maskd[plon > 20] = np.nan
        maskd[plon < -30] = np.nan

    Nordic_mask = maskd

    proj = ccrs.Stereographic(central_latitude=90.0, central_longitude=-40.0)
    pxy = proj.transform_points(ccrs.PlateCarree(), plon, plat)
    px = pxy[:, :, 0]
    py = pxy[:, :, 1]
    x, y = np.meshgrid(np.arange(plon.shape[1]), np.arange(plon.shape[0]))

    if vector:
        logger.info("Vector component 1:%s" % fieldname)
        logger.info("Vector component 2:%s" % vector)

    #---------------first read and compute clim
    Err_map = 1
    sum_fld1 = maskd
    sum_fld1[~np.isnan(sum_fld1)] = 0.0
    Clim_arr = np.zeros((plon.shape[0], plon.shape[1], 12))
    if 'tem' or 'sal' in fieldname:
        counter = 0
        if 'tem' in fieldname:
            rlxfile0 = "/cluster/work/users/achoth/TP5a0.06/relax/050/relax_tem.a"
        if 'sal' in fieldname:
            rlxfile0 = "/cluster/work/users/achoth/TP5a0.06/relax/050/relax_sal.a"
        rlx_afile = abf.AFile(ab.idm, ab.jdm, rlxfile0, "r")
        lyr = fieldlevel
        record_num = 1
        record_var = record_num - 1
        fld = rlx_afile.read_record(record_var)
        print('mn,mx  data='), fld.min(), fld.max()
        kdm = 50
        dt_clim = np.zeros(12)
        for mnth in range(12):
            fld1 = rlx_afile.read_record(mnth * kdm + lyr - 1)
            print('record, mn,mx  data='), kdm * mnth, fld1.min(), fld1.max()
            # Intloop used to read more fields in one file. Only for forcing for now
            dt_clim[mnth] = mod_hyc2plot.spatiomean(fld1, maskd)
            sum_fld1 = sum_fld1 + fld1
            Clim_arr[:, :, mnth] = fld1[:, :]
            counter = counter + 1
            print('counter='), counter
            del fld1
        Clim_Avg = sum_fld1 / counter
        del sum_fld1

    #---------------filename
    figure = matplotlib.pyplot.figure(figsize=(8, 8))
    ax = figure.add_subplot(111)
    onemm = 9.806
    counter = 0
    file_count = 0
    sum_fld1 = maskd
    sum_fld1[~np.isnan(sum_fld1)] = 0.0
    dt_cnl = np.zeros(len(myfiles))
    diff_dt_cnl = np.zeros(len(myfiles))
    rmse_dt_cnl = np.zeros(len(myfiles))
    Labl1 = "Model: " + fieldname
    if "SPRBAS_0" in myfiles[0]:
        Labl1 = "CNTL: prsbas=0 "
    if filename2:
        dt_2 = np.zeros(len(filename2))
        diff_dt_2 = np.zeros(len(filename2))
        rmse_dt_2 = np.zeros(len(filename2))
        yyyy1 = filename2[0][-9:-5]
        print("filename2[0]="), filename2[0][-9:-5]
        print("filename2[0]="), filename2[0]
        print("yyy1="), yyyy1
        tid_2=np.array([datetime.datetime(int(yyyy1), 1, 15) \
           + relativedelta(months=i) for i in range(len(filename2))])
        Labl2 = "filename2"
        Labl2 = "Corrected"
        if "erai" in filename2[0]:
            Labl2 = "CNTL: prsbas=1e5 "

    yyyy1cnt = myfiles[0][-8:-5]
    print("myfiles[0]="), myfiles[0][-9:-5]
    print("myfiles[0]="), myfiles[0]
    print("yyy1cnt="), print(yyyy1cnt)
    base = datetime.datetime(int(yyyy1cnt), 1, 15)
    tid = np.array(
        [base + relativedelta(months=i) for i in range(len(myfiles))])
    if len(myfiles) == 36:
        base = datetime.datetime(int(yyyy1cnt), 1, 15)
        tid = np.array(
            [base + relativedelta(months=i) for i in range(len(myfiles))])

    nmexp = 1
    if filename2:
        nmexp = nmexp + 1
    print(
        'processing data from No runs ==##############>>>>>>>>>>>>>>>>>>>>>>>'
    ), nmexp
    for iii in range(nmexp):
        counter = 0
        file_count = 0
        sum_fld1 = maskd
        sum_fld1[~np.isnan(sum_fld1)] = 0.0
        if iii == 1 and filename2:
            myfiles = filename2
        else:
            logger.info(
                ">>>>>--------------------------Processing the first files=  %d<<<<"
                % iii)

        logger.info(
            ">>>>>--------------------------Processing the first files=  %d<<<<"
            % iii)
        for myfile0 in myfiles:
            # Open files, and return some useful stuff.
            # ab2 i used in case of vector
            # rdtimes is used for plotting forcing fields
            n_intloop,ab,ab2,rdtimes = open_file(myfile0,filetype,fieldname,fieldlevel,\
                  datetime1=datetime1,datetime2=datetime2,vector=vector,idm=idm,jdm=jdm)
            # Intloop used to read more fields in one file. Only for forcing for now
            for i_intloop in range(n_intloop):
                # Read ab file of different types
                if filetype == "archive":
                    fld1 = ab.read_field(fieldname, fieldlevel)
                elif filetype == "forcing":
                    fld1 = ab.read_field(fieldname, rdtimes[i_intloop])
                    if vector:
                        fld2 = ab2.read_field(vector, rdtimes[i_intloop])
                    logger.info("Processing time %.2f" % rdtimes[i_intloop])
                else:
                    raise NotImplementedError("Filetype %s not implemented" %
                                              filetype)
                if not window:
                    J, I = np.meshgrid(np.arange(fld1.shape[0]),
                                       np.arange(fld1.shape[1]))
                else:
                    J, I = np.meshgrid(np.arange(window[1], window[3]),
                                       np.arange(window[0], window[2]))
                # Create scalar field for vectors
                if vector:
                    fld = np.sqrt(fld1**2 + fld2**2)
                else:
                    fld = fld1
                print('---------mn,mx  data='), fld.min(), fld.max()
                sum_fld1 = sum_fld1 + fld
                cindx = np.remainder(counter, 12)
                print("counter"), counter, print("cindx="), cindx
                if iii == 0:
                    dt_cnl[counter] = mod_hyc2plot.spatiomean(fld, Nordic_mask)
                    diff_dt_cnl[counter] = mod_hyc2plot.spatiomean(
                        fld[:, :] - Clim_arr[:, :, cindx], Nordic_mask)
                    rmse_dt_cnl[counter] = np.sqrt(
                        mod_hyc2plot.spatiomean(
                            (fld[:, :] - Clim_arr[:, :, cindx])**2,
                            Nordic_mask))
                    Labl = Labl1
                if iii == 1 and filename2:
                    dt_2[counter] = mod_hyc2plot.spatiomean(fld, Nordic_mask)
                    diff_dt_2[counter] = mod_hyc2plot.spatiomean(
                        fld[:, :] - Clim_arr[:, :, cindx], Nordic_mask)
                    rmse_dt_2[counter] = np.sqrt(
                        mod_hyc2plot.spatiomean(
                            (fld[:, :] - Clim_arr[:, :, cindx])**2,
                            Nordic_mask))
                    Labl = Labl2
                # Apply mask if requested
                counter = counter + 1
                file_count = file_count + 1
                del fld
            # End i_intloop
        print('Computing the avearge of file_counter= '), print(
            file_count), print('counter='), print(counter), print(
                'cindx='), print(cindx)
        if file_count > 0:
            fld_Avg = sum_fld1 / file_count
        if Err_map:
            cmap = cmocean.cm.balance
            fld_diff = fld_Avg - Clim_Avg

        if fieldname == 'k.e.':
            P = ax.pcolormesh(x[J, I],
                              y[J, I],
                              np.log10(fld_Avg[J, I]),
                              cmap=cmap)
        elif fieldname == 'srfhgt':
            P = ax.pcolormesh(x[J, I],
                              y[J, I], (fld_Avg[J, I] / onemm),
                              cmap=cmap)
        else:
            P = ax.pcolormesh(x[J, I], y[J, I], fld_diff[J, I], cmap=cmap)
        if 'temp' in fieldname:
            P1 = ax.contour(x[J, I],
                            y[J, I],
                            fld_diff[J, I],
                            levels=[-1., 1, 4.0, 8],
                            colors=('w', ),
                            linestyles=('-', ),
                            linewidths=(1.5, ))
            matplotlib.pyplot.clabel(P1, fmt='%2.1d', colors='w',
                                     fontsize=10)  #contour line labels

        # Print figure.
        aspect = 40
        pad_fraction = 0.25
        divider = make_axes_locatable(ax)
        width = axes_size.AxesY(ax, aspect=1. / aspect)
        pad = axes_size.Fraction(pad_fraction, width)
        cax = divider.append_axes("right", size=width, pad=pad)
        cb = ax.figure.colorbar(P, cax=cax, extend='both')
        if clim is not None: P.set_clim(clim)
        ax.set_title("Diff:%s(%d)" % (fieldname, fieldlevel) +
                     ' :( Model - Clim )')
        # Print figure.
        fnamepng_template = myfiles[0][-20:-5].replace(
            "/", '') + "_Avg_TP6_%s_%d_%03d_iii%03d_Avg.png"
        if Region_mask:
            fnamepng_template='Region_'+yyyy1cnt+myfiles[0][1:11].replace("/",'') \
                  +"Avg_TP5_%s_%d_%03d_iii%03d_Avg.png"
        fnamepng = fnamepng_template % (fieldname, fieldlevel, counter, iii)
        logger.info("output in  %s" % fnamepng)
        figure.canvas.print_figure(fnamepng, bbox_inches='tight', dpi=dpi)
        ax.clear()
        cb.remove()
        datmen = np.nanmean(fld_diff)
        spatiodatmen = mod_hyc2plot.spatiomean(fld_diff, Nordic_mask)
        print('-----------mean diff data, spatio='), datmen, spatiodatmen
        del sum_fld1
        #---------------------------------------

    print('tid len='), print(tid.shape)
    if filename2:
        print('dt_2='), print(dt_2.shape)
    tid_clim = np.array([base + relativedelta(months=i) for i in range(12)])
    figure, ax = plt.subplots()
    rpt = len(dt_cnl) / 12
    dt_clim_cat = dt_clim
    for ii in range(int(rpt - 1)):
        print("concatenate ")
        dt_clim_cat = np.concatenate([dt_clim_cat, dt_clim])

    years = YearLocator()  # every year
    months = MonthLocator()  # every month
    yearsFmt = DateFormatter('%Y')
    nplts = 1
    ax.plot_date(tid, dt_cnl, '-o', color='g', ms=3, label=Labl1)
    if filename2:
        ax.plot_date(tid_2, dt_2, '-v', color='orange', ms=3, label=Labl2)
        nplts = nplts + 1
    if filename5:
        ax.plot_date(tid_5, dt_5, '--', color='m', label=Labl5)
        nplts = nplts + 1
    if 'tem' or 'sal' in fieldname:
        ax.plot_date(tid[0:len(dt_cnl)],
                     dt_clim_cat[:],
                     ':',
                     color='black',
                     label='Clim:' + fieldname)
        nplts = nplts + 1
    ax.xaxis.set_major_locator(years)
    ax.xaxis.set_major_formatter(yearsFmt)
    ax.xaxis.set_minor_locator(months)
    ax.autoscale_view()

    # format the coords message box
    def price(x):
        return '$%1.2f' % x

    ax.fmt_xdata = DateFormatter('%Y-%m-%d')
    ax.fmt_ydata = price
    ax.grid(True)
    figure.autofmt_xdate()
    legend = plt.legend(loc='upper left', fontsize=8)
    plt.title("Area-averaged: %s(%d)" % (fieldname, fieldlevel))
    plt.ylabel("%s(%d)" % (fieldname, fieldlevel))
    ts_fil = "time_series_cntl_flx_%s_%02d_%02d" % (fieldname, fieldlevel,
                                                    nplts)
    if Region_mask:
        ts_fil = 'Region_' + ts_fil
    figure.canvas.print_figure(ts_fil, bbox_inches='tight', dpi=dpi)
    logger.info("Successfull printing:  %s" % ts_fil)

    #-----------------
    # plot short  mean error
    figure, ax = plt.subplots()
    print("diff_dt_cnl[:]="), diff_dt_cnl[:]
    nplts = 1
    ll = -1 * len(tid)
    if filename2:
        ll = -1 * len(tid)
    ax.plot_date(tid[ll:], diff_dt_cnl[ll:], '-o', color='g', ms=3)
    if filename2:
        ax.plot_date(tid_2, diff_dt_2, '-v', color='orange', ms=3, label=Labl2)
        nplts = nplts + 1

    ax.xaxis.set_major_locator(years)
    ax.xaxis.set_major_formatter(yearsFmt)
    ax.xaxis.set_minor_locator(months)
    ax.autoscale_view()

    # format the coords message box
    def price(x):
        return '$%1.2f' % x

    ax.fmt_xdata = DateFormatter('%Y-%m-%d')
    ax.fmt_ydata = price
    ax.grid(True)
    figure.autofmt_xdate()
    legend = plt.legend(loc='upper left', fontsize=8)
    plt.title("Mean diff:Model-Clim: %s(%d)" % (fieldname, fieldlevel))
    plt.ylabel("diff:%s(%d)" % (fieldname, fieldlevel))
    ts_fil = 'Mdiff' + "ST_cntl_flx_%s_%02d_%02d" % (fieldname, fieldlevel,
                                                     nplts)
    if Region_mask:
        ts_fil = 'Region_Mdiff' + "ST_cntl_flx_%s_%02d_%02d" % (
            fieldname, fieldlevel, nplts)
    figure.canvas.print_figure(ts_fil, bbox_inches='tight', dpi=dpi)
    logger.info("Successfull printing:  %s" % ts_fil)

    # plot rooot mean square RMSE  error
    figure, ax = plt.subplots()
    nplts = 1
    ll = -1 * len(tid)
    if filename2:
        ll = -1 * len(tid_2)
    ax.plot_date(tid[ll:], rmse_dt_cnl[ll:], '-o', color='g', ms=3)
    if filename2:
        ax.plot_date(tid_2, rmse_dt_2, '-v', color='orange', ms=3, label=Labl2)
        nplts = nplts + 1

    ax.xaxis.set_major_locator(years)
    ax.xaxis.set_major_formatter(yearsFmt)
    ax.xaxis.set_minor_locator(months)
    ax.autoscale_view()

    # format the coords message box
    def price(x):
        return '$%1.2f' % x

    ax.fmt_xdata = DateFormatter('%Y-%m-%d')
    ax.fmt_ydata = price
    ax.grid(True)
    figure.autofmt_xdate()
    legend = plt.legend(loc='upper left', fontsize=8)
    plt.title("RMSE: (Model-Clim) %s(%d)" % (fieldname, fieldlevel))
    plt.ylabel("RMSE:%s(%d)" % (fieldname, fieldlevel))
    ts_fil = 'RMSE' + "ST_cntl_flx_%s_%02d_%02d" % (fieldname, fieldlevel,
                                                    nplts)
    if Region_mask:
        ts_fil = 'Region_RMSE' + "ST2007_cntl_flx_%s_%02d_%02d" % (
            fieldname, fieldlevel, nplts)
    figure.canvas.print_figure(ts_fil, bbox_inches='tight', dpi=dpi)
    logger.info("Successfull printing:  %s" % ts_fil)
    logger.info(
        "End --------------------------------------------------------------- printing:  %s"
        % ts_fil)