def test_good_case(self): # hypothetical data for two atoms good_powder = { "a_tensors": { "0": np.asarray([[[0.01, 0.02, 0.03], [0.01, 0.02, 0.03], [0.01, 0.02, 0.03]], [[0.01, 0.02, 0.03], [0.01, 0.02, 0.03], [0.01, 0.02, 0.03]]]) }, "b_tensors": { "0": np.asarray([[[0.01, 0.02, 0.03], [0.01, 0.02, 0.03], [0.01, 0.02, 0.03]], [[0.01, 0.02, 0.03], [0.01, 0.02, 0.03], [0.01, 0.02, 0.03]]]) } } good_tester = PowderData(num_atoms=2) good_tester.set(items=good_powder) extracted_data = good_tester.extract() for key in good_powder: for k_point in good_powder[key]: self.assertEqual( True, np.allclose(good_powder[key][k_point], extracted_data[key][k_point]))
def test_roundtrip(self): initial_powderdata = PowderData(**self.good_items, num_atoms=2) roundtrip_data = PowderData.from_extracted(initial_powderdata.extract()) for attr in 'get_a_tensors', 'get_b_tensors', 'get_frequencies': for k_index in self.good_items['a_tensors']: self.assertTrue(np.allclose(getattr(initial_powderdata, attr)()[k_index], getattr(roundtrip_data, attr)()[k_index]))
def test_bad_items(self): # wrong items: array instead of dict bad_items = self.good_items.copy() bad_items['a_tensors'] = bad_items['a_tensors'][0] with self.assertRaises(TypeError): PowderData(**bad_items, num_atoms=2) # list instead of np array bad_items = self.good_items.copy() for key, value in bad_items.items(): bad_items[key][0] = value[0].tolist() with self.assertRaises(TypeError): PowderData(**bad_items, num_atoms=2) # wrong size of items: data only for one atom ; should be for two atoms bad_items = { "a_tensors": { 0: np.asarray([[[0.01, 0.02, 0.03], [0.01, 0.02, 0.03], [0.01, 0.02, 0.03]]]) }, "b_tensors": { 0: np.asarray([[[0.01, 0.02, 0.03], [0.01, 0.02, 0.03], [0.01, 0.02, 0.03]]]) }, "frequencies": { 0: np.asarray([[[1.23, 4.56, 7.89]]]) } } with self.assertRaises(ValueError): PowderData(**bad_items, num_atoms=2)
def test_getters(self): good_powderdata = PowderData(**self.good_items, num_atoms=2) for k_point in self.good_items["a_tensors"]: self.assertTrue(np.allclose(self.good_items["a_tensors"][k_point], good_powderdata.get_a_tensors()[k_point])) self.assertTrue(np.allclose(self.good_items["b_tensors"][k_point], good_powderdata.get_b_tensors()[k_point])) self.assertTrue(np.allclose(self.good_items["frequencies"][k_point], good_powderdata.get_frequencies()[k_point]))
def test_good_case(self): good_powderdata = PowderData(**self.good_items, num_atoms=2) extracted_data = good_powderdata.extract() for key in self.good_items: for k_index in self.good_items[key]: self.assertTrue(np.allclose(self.good_items[key][k_index], extracted_data[key][str(k_index)])) # Should also work if num_atoms is not given PowderData(**self.good_items)
def test_set(self): poor_tester = PowderData(num_atoms=2) # wrong items: list instead of numpy array bad_items = { "a_tensors": [[0.002, 0.001]], "b_tensors": [[0.002, 0.001]] } with self.assertRaises(ValueError): poor_tester.set(items=bad_items) # wrong size of items: data only for one atom ; should be for two atoms bad_items = { "a_tensors": { "0": np.asarray([[[0.01, 0.02, 0.03], [0.01, 0.02, 0.03], [0.01, 0.02, 0.03]]]) }, "b_tensors": { "0": np.asarray([[[0.01, 0.02, 0.03], [0.01, 0.02, 0.03], [0.01, 0.02, 0.03]]]) } } with self.assertRaises(ValueError): poor_tester.set(items=bad_items)
def test_input(self): # wrong number of atoms with self.assertRaises(ValueError): _ = PowderData(num_atoms=-2)
def test_bad_num_atoms(self): # wrong number of atoms with self.assertRaises(ValueError): PowderData(**self.good_items, num_atoms=-2)