Exemplo n.º 1
0
def my_model(features, labels, mode, params):

    N = params["N"]
    n_samples = NSAMPLES if mode == tf.estimator.ModeKeys.TRAIN \
        else NPREDICTSAMPLES

    X = tf.feature_column.input_layer(features, params['feature_columns'])

    kernel = ab.RBF(LENSCALE, learn_lenscale=True)
    net = (
        ab.InputLayer(name="X", n_samples=n_samples) >>
        ab.RandomFourier(n_features=NFEATURES, kernel=kernel) >>
        ab.Dense(output_dim=64, init_fn="autonorm") >>
        ab.Activation(tf.nn.selu) >>
        ab.DenseVariational(output_dim=1, full=False, prior_std=1.0,
                            learn_prior=True)
    )

    phi, kl = net(X=X)
    std = ab.pos_variable(NOISE, name="noise")
    ll_f = tf.distributions.Normal(loc=phi, scale=std)
    predict_mean = ab.sample_mean(phi)

    # Compute predictions.
    if mode == tf.estimator.ModeKeys.PREDICT:
        predictions = {
            'predictions': predict_mean,
            'samples': phi
        }
        return tf.estimator.EstimatorSpec(mode, predictions=predictions)

    ll = ll_f.log_prob(labels)
    loss = ab.elbo(ll, kl, N)
    tf.summary.scalar('loss', loss)

    # Compute evaluation metrics.
    mse = tf.metrics.mean_squared_error(labels=labels,
                                        predictions=predict_mean,
                                        name='mse_op')
    r2 = r2_metric(labels, predict_mean)
    metrics = {'mse': mse,
               'r2': r2}

    if mode == tf.estimator.ModeKeys.EVAL:
        return tf.estimator.EstimatorSpec(
            mode, loss=loss, eval_metric_ops=metrics)

    # Create training op.
    assert mode == tf.estimator.ModeKeys.TRAIN

    optimizer = tf.train.AdamOptimizer()
    train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())
    return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
Exemplo n.º 2
0
def bayesian_linear(X, Y):
    """Bayesian Linear Regression."""
    noise = ab.pos_variable(1.0)

    net = (
        ab.InputLayer(name="X", n_samples=n_samples_) >>
        ab.DenseVariational(output_dim=1, full=True)
    )

    f, kl = net(X=X)
    lkhood = tf.distributions.Normal(loc=f, scale=noise).log_prob(Y)
    loss = ab.elbo(lkhood, kl, N)

    return f, loss
Exemplo n.º 3
0
def gaussian_process(X, Y):
    """Gaussian Process Regression."""
    noise = ab.pos_variable(.5)
    kern = ab.RBF(learn_lenscale=False)  # learn lengthscale

    net = (
        ab.InputLayer(name="X", n_samples=n_samples_) >>
        ab.RandomFourier(n_features=50, kernel=kern) >>
        ab.DenseVariational(output_dim=1, full=True, learn_prior=True)
    )

    f, kl = net(X=X)
    lkhood = tf.distributions.Normal(loc=f, scale=noise).log_prob(Y)
    loss = ab.elbo(lkhood, kl, N)

    return f, loss
Exemplo n.º 4
0
def deep_gaussian_process(X, Y):
    """Deep Gaussian Process Regression."""
    noise = ab.pos_variable(.1)

    net = (
        ab.InputLayer(name="X", n_samples=n_samples_) >>
        ab.RandomFourier(n_features=20, kernel=ab.RBF(learn_lenscale=True)) >>
        ab.DenseVariational(output_dim=5, full=False) >>
        ab.RandomFourier(n_features=10, kernel=ab.RBF(1., seed=1)) >>
        ab.DenseVariational(output_dim=1, full=False, learn_prior=True)
    )

    f, kl = net(X=X)
    lkhood = tf.distributions.Normal(loc=f, scale=noise).log_prob(Y)
    loss = ab.elbo(lkhood, kl, N)

    return f, loss
Exemplo n.º 5
0
def nnet_ncp(X, Y):
    """Noise contrastive prior network."""
    noise = ab.pos_variable(.5)
    lstd = 1.
    perturb_noise = 10.

    net = (
        ab.InputLayer(name="X", n_samples=n_samples_) >>
        ab.NCPContinuousPerturb(input_noise=perturb_noise) >>
        ab.Dense(output_dim=32) >>
        ab.Activation(tf.nn.selu) >>
        ab.Dense(output_dim=16) >>
        ab.Activation(tf.nn.selu) >>
        ab.Dense(output_dim=8) >>
        ab.Activation(tf.nn.selu) >>
        ab.DenseNCP(output_dim=1, prior_std=.1, latent_std=lstd)
    )

    f, kl = net(X=X)
    lkhood = tf.distributions.Normal(loc=f, scale=noise).log_prob(Y)
    loss = ab.elbo(lkhood, kl, N)
    return f, loss
Exemplo n.º 6
0
def main():
    """Run the demo."""
    n_iters = int(round(n_epochs * N / batch_size))
    print("Iterations = {}".format(n_iters))

    # Get training and testing data
    Xr, Yr, Xs, Ys = gp_draws(N, Ns, kern=kernel, noise=true_noise)

    # Prediction points
    Xq = np.linspace(-20, 20, Ns).astype(np.float32)[:, np.newaxis]
    Yq = np.linspace(-4, 4, Ns).astype(np.float32)[:, np.newaxis]

    # Set up the probability image query points
    Xi, Yi = np.meshgrid(Xq, Yq)
    Xi = Xi.astype(np.float32).reshape(-1, 1)
    Yi = Yi.astype(np.float32).reshape(-1, 1)

    _, D = Xr.shape

    # Name the "data" parts of the graph
    with tf.name_scope("Input"):
        # This function will make a TensorFlow queue for shuffling and batching
        # the data, and will run through n_epochs of the data.
        Xb, Yb = batch_training(Xr,
                                Yr,
                                n_epochs=n_epochs,
                                batch_size=batch_size)
        X_ = tf.placeholder_with_default(Xb, shape=(None, D))
        Y_ = tf.placeholder_with_default(Yb, shape=(None, 1))

    # This is where we build the actual GP model
    with tf.name_scope("Deepnet"):
        phi, reg = net(X=X_)
        noise = ab.pos_variable(NOISE)
        ll = tf.distributions.Normal(loc=phi, scale=noise).log_prob(Y_)
        loss = ab.max_posterior(ll, reg)

    # Set up the trainig graph
    with tf.name_scope("Train"):
        optimizer = tf.train.AdamOptimizer()
        global_step = tf.train.create_global_step()
        train = optimizer.minimize(loss, global_step=global_step)

    # This is used for building the predictive density image
    with tf.name_scope("Predict"):
        logprob = tf.reduce_mean(ll, axis=0)

    # Logging learning progress
    log = tf.train.LoggingTensorHook({
        'step': global_step,
        'loss': loss
    },
                                     every_n_iter=1000)

    # This is the main training "loop"
    with tf.train.MonitoredTrainingSession(config=config,
                                           save_summaries_steps=None,
                                           save_checkpoint_secs=None,
                                           hooks=[log]) as sess:
        try:
            while not sess.should_stop():
                sess.run(
                    train,
                    feed_dict={
                        n_samples_: n_samples,
                        # tf.keras.backend.learning_phase(): 1
                    })
        except tf.errors.OutOfRangeError:
            print('Input queues have been exhausted!')
            pass

        # Prediction, the [[None]] is to stop the default placeholder queue
        # we keep learning phase flag on even in prediction phase to draw
        # samples from predictive distribution
        Ey = sess.run(phi,
                      feed_dict={
                          X_: Xq,
                          Y_: [[None]],
                          n_samples_: p_samples
                      })

        logPY = sess.run(logprob,
                         feed_dict={
                             Y_: Yi,
                             X_: Xi,
                             n_samples_: p_samples
                         })

    Eymean = Ey.mean(axis=0)  # Average samples to get mean predicted funtion
    Py = np.exp(logPY.reshape(Ns, Ns))  # Turn log-prob into prob

    # Plot
    im_min = np.amin(Py)
    im_size = np.amax(Py) - im_min
    img = (Py - im_min) / im_size
    f = bk.figure(tools='pan,box_zoom,reset', sizing_mode='stretch_both')
    f.image(image=[img], x=-20., y=-4., dw=40., dh=8, palette=bp.Plasma256)
    f.circle(Xr.flatten(), Yr.flatten(), fill_color='blue', legend='Training')
    f.line(Xs.flatten(), Ys.flatten(), line_color='blue', legend='Truth')
    for y in Ey:
        f.line(Xq.flatten(),
               y.flatten(),
               line_color='red',
               legend='Samples',
               alpha=0.2)
    f.line(Xq.flatten(), Eymean.flatten(), line_color='green', legend='Mean')
    bk.show(f)
Exemplo n.º 7
0
def main():
    """Run the imputation demo."""
    # Fetch data, one-hot targets and standardise data
    data = fetch_covtype()
    Xo = data.data[:, :10]
    Xc = data.data[:, 10:]
    Y = (data.target - 1)
    Xo[:, :10] = StandardScaler().fit_transform(Xo[:, :10])

    # Network construction
    n_samples_ = tf.placeholder_with_default(LSAMPLES, [])
    data_input = ab.InputLayer(name='Xo', n_samples=n_samples_)  # Data input

    # Run this with imputation
    if METHOD is not None:
        print("Imputation method {}.".format(METHOD))

        # Fake some missing data
        rnd = np.random.RandomState(RSEED)
        mask = rnd.rand(*Xo.shape) < FRAC_MISSING
        Xo[mask] = MISSING_VAL

        # Use Aboleth to imputate
        mask_input = ab.MaskInputLayer(name='M')  # Missing data mask input
        xm = np.ma.array(Xo, mask=mask)
        if METHOD == "LearnedNormalImpute":
            mean = tf.Variable(np.ma.mean(xm, axis=0).data.astype(np.float32))
            std = ab.pos_variable(np.ma.std(xm, axis=0)
                                  .data.astype(np.float32))
            input_layer = ab.NormalImpute(data_input, mask_input, mean, std)
        elif METHOD == "LearnedScalarImpute":
            scalar = tf.Variable(tf.zeros(Xo.shape[-1]))
            input_layer = ab.ScalarImpute(data_input, mask_input, scalar)
        elif METHOD == "FixedNormalImpute":
            mean = np.ma.mean(xm, axis=0).data.astype(np.float32)
            std = np.ma.std(xm, axis=0).data.astype(np.float32)
            input_layer = ab.NormalImpute(data_input, mask_input, mean, std)
        elif METHOD == "FixedScalarImpute":
            mean = np.ma.mean(xm, axis=0).data.astype(np.float32)
            input_layer = ab.ScalarImpute(data_input, mask_input, mean)
        elif METHOD == "MeanImpute":
            input_layer = ab.MeanImpute(data_input, mask_input)

        else:
            raise ValueError("Invalid method!")

    # Run this without imputation
    else:
        print("No missing data")
        input_layer = data_input
        mask = np.zeros_like(Xo)

    cat_layers = (
        ab.InputLayer(name='Xc', n_samples=n_samples_) >>
        ab.DenseVariational(output_dim=8)
    )

    con_layers = (
        input_layer >>
        ab.DenseVariational(output_dim=8)
    )

    net = (
        ab.Concat(cat_layers, con_layers) >>
        ab.Activation(tf.nn.selu) >>
        ab.DenseVariational(output_dim=NCLASSES)
    )

    # Split the training and testing data
    Xo_tr, Xo_ts, Xc_tr, Xc_ts, Y_tr, Y_ts, M_tr, M_ts = train_test_split(
        Xo.astype(np.float32),
        Xc.astype(np.float32),
        Y.astype(np.int32),
        mask,
        test_size=FRAC_TEST,
        random_state=RSEED
    )
    N_tr, Do = Xo_tr.shape
    _, Dc = Xc_tr.shape

    # Data
    with tf.name_scope("Input"):
        Xob, Xcb, Yb, Mb = batch_training(Xo_tr, Xc_tr, Y_tr, M_tr,
                                          n_epochs=NEPOCHS, batch_size=BSIZE)
        Xo_ = tf.placeholder_with_default(Xob, shape=(None, Do))
        Xc_ = tf.placeholder_with_default(Xcb, shape=(None, Dc))
        # Y_ has to be this dimension for compatability with Categorical
        Y_ = tf.placeholder_with_default(Yb, shape=(None,))
        if METHOD is not None:
            M_ = tf.placeholder_with_default(Mb, shape=(None, Do))

    with tf.name_scope("Deepnet"):
        if METHOD is not None:
            nn, kl = net(Xo=Xo_, Xc=Xc_, M=M_)
        else:
            nn, kl = net(Xo=Xo_, Xc=Xc_)

        lkhood = tf.distributions.Categorical(logits=nn)
        loss = ab.elbo(lkhood.log_prob(Y_), kl, N_tr)
        prob = ab.sample_mean(lkhood.probs)

    with tf.name_scope("Train"):
        optimizer = tf.train.AdamOptimizer()
        global_step = tf.train.create_global_step()
        train = optimizer.minimize(loss, global_step=global_step)

    # Logging learning progress
    log = tf.train.LoggingTensorHook(
        {'step': global_step, 'loss': loss},
        every_n_iter=1000
    )

    # This is the main training "loop"
    with tf.train.MonitoredTrainingSession(
            config=CONFIG,
            save_summaries_steps=None,
            save_checkpoint_secs=None,
            hooks=[log]
    ) as sess:
        try:
            while not sess.should_stop():
                sess.run(train)
        except tf.errors.OutOfRangeError:
            print('Input queues have been exhausted!')
            pass

        # Prediction
        feed_dict = {Xo_: Xo_ts, Xc_: Xc_ts, Y_: [0], n_samples_: PSAMPLES}
        if METHOD is not None:
            feed_dict[M_] = M_ts

        p = sess.run(prob, feed_dict=feed_dict)

    # Get mean of samples for prediction, and max probability assignments
    Ey = p.argmax(axis=1)

    # Score results
    acc = accuracy_score(Y_ts, Ey)
    ll = log_loss(Y_ts, p)
    conf = confusion_matrix(Y_ts, Ey)
    print("Final scores: {}".format(METHOD))
    print("\tAccuracy = {}\n\tLog loss = {}\n\tConfusion =\n{}".
          format(acc, ll, conf))