Exemplo n.º 1
0
def sample_935_2():
    """
    9.3.5_2 不同权重的评分: 只考虑胜率
    :return:
    """
    from abupy import ABuFileUtil
    score_fn = '../gen/score_tuple_array'
    if not ABuFileUtil.file_exist(score_fn):
        print(
            '../gen/score_tuple_array not exist! please execute sample_933 first!'
        )
        return
    """
        直接读取本地序列化文件
    """
    score_tuple_array = ABuFileUtil.load_pickle(score_fn)

    from abupy import WrsmScorer
    # 只有第一项为1,其他都是0代表只考虑胜率来评分
    scorer = WrsmScorer(score_tuple_array, weights=[1, 0, 0, 0])
    # 返回按照评分排序后的队列
    scorer_returns_max = scorer.fit_score()
    # index[-1]为最优参数序号
    best_score_tuple_grid = score_tuple_array[scorer_returns_max.index[-1]]
    AbuMetricsBase.show_general(best_score_tuple_grid.orders_pd,
                                best_score_tuple_grid.action_pd,
                                best_score_tuple_grid.capital,
                                best_score_tuple_grid.benchmark,
                                only_info=False)

    # 最后打印出只考虑胜率下最优结果使用的买入策略和卖出策略
    print(
        'best_score_tuple_grid.buy_factors, best_score_tuple_grid.sell_factors:\n',
        best_score_tuple_grid.buy_factors, best_score_tuple_grid.sell_factors)
Exemplo n.º 2
0
Arquivo: c9.py Projeto: 3774257/abu
def sample_935_2():
    """
    9.3.5_2 不同权重的评分: 只考虑胜率
    :return:
    """
    from abupy import ABuFileUtil
    score_fn = '../gen/score_tuple_array'
    if not ABuFileUtil.file_exist(score_fn):
        print('../gen/score_tuple_array not exist! please execute sample_933 first!')
        return

    """
        直接读取本地序列化文件
    """
    score_tuple_array = ABuFileUtil.load_pickle(score_fn)

    from abupy import WrsmScorer
    # 只有第一项为1,其他都是0代表只考虑胜率来评分
    scorer = WrsmScorer(score_tuple_array, weights=[1, 0, 0, 0])
    # 返回按照评分排序后的队列
    scorer_returns_max = scorer.fit_score()
    # index[-1]为最优参数序号
    best_score_tuple_grid = score_tuple_array[scorer_returns_max.index[-1]]
    AbuMetricsBase.show_general(best_score_tuple_grid.orders_pd,
                                best_score_tuple_grid.action_pd,
                                best_score_tuple_grid.capital,
                                best_score_tuple_grid.benchmark,
                                only_info=False)

    # 最后打印出只考虑胜率下最优结果使用的买入策略和卖出策略
    print('best_score_tuple_grid.buy_factors, best_score_tuple_grid.sell_factors:\n', best_score_tuple_grid.buy_factors,
          best_score_tuple_grid.sell_factors)
Exemplo n.º 3
0
def sample_934():
    """
    9.3.4 度量结果的评分
    :return:
    """
    from abupy import ABuFileUtil
    score_fn = '../gen/score_tuple_array'
    if not ABuFileUtil.file_exist(score_fn):
        print(
            '../gen/score_tuple_array not exist! please execute sample_933 first!'
        )
        return
    """
        直接读取本地序列化文件
    """
    score_tuple_array = ABuFileUtil.load_pickle(score_fn)
    from abupy import WrsmScorer
    # 实例化一个评分类WrsmScorer,它的参数为之前GridSearch返回的score_tuple_array对象
    scorer = WrsmScorer(score_tuple_array)
    print('scorer.score_pd.tail():\n', scorer.score_pd.tail())

    # score_tuple_array[658]与grid_search.best_score_tuple_grid是一致的
    sfs = scorer.fit_score()
    # 打印前15个高分组合
    print('sfs[::-1][:15]:\n', sfs[::-1][:15])
Exemplo n.º 4
0
Arquivo: c9.py Projeto: 3774257/abu
def sample_933():
    """
    9.3.3 GridSearch寻找最优参数
    :return:
    """
    from abupy import GridSearch

    read_cash = 1000000
    choice_symbols = ['usNOAH', 'usSFUN', 'usBIDU', 'usAAPL', 'usGOOG',
                      'usTSLA', 'usWUBA', 'usVIPS']

    sell_factors_product, buy_factors_product = sample_932(show=False)

    grid_search = GridSearch(read_cash, choice_symbols,
                             buy_factors_product=buy_factors_product,
                             sell_factors_product=sell_factors_product)

    from abupy import ABuFileUtil
    """
        注意下面的运行耗时大约1小时多,如果所有cpu都用上的话,也可以设置n_jobs为 < cpu进程数,一边做其它的一边跑
    """
    # 运行GridSearch n_jobs=-1启动cpu个数的进程数
    scores, score_tuple_array = grid_search.fit(n_jobs=-1)

    """
        针对运行完成输出的score_tuple_array可以使用dump_pickle保存在本地,以方便修改其它验证效果。
    """
    ABuFileUtil.dump_pickle(score_tuple_array, '../gen/score_tuple_array')

    print('组合因子参数数量{}'.format(len(buy_factors_product) * len(sell_factors_product)))
    print('最终评分结果数量{}'.format(len(scores)))

    best_score_tuple_grid = grid_search.best_score_tuple_grid
    AbuMetricsBase.show_general(best_score_tuple_grid.orders_pd, best_score_tuple_grid.action_pd,
                                best_score_tuple_grid.capital, best_score_tuple_grid.benchmark)
Exemplo n.º 5
0
Arquivo: c9.py Projeto: 3774257/abu
def sample_935_1():
    """
    9.3.5_1 不同权重的评分: 只考虑投资回报来评分
    :return:
    """
    from abupy import ABuFileUtil
    score_fn = '../gen/score_tuple_array'
    if not ABuFileUtil.file_exist(score_fn):
        print('../gen/score_tuple_array not exist! please execute sample_933 first!')
        return

    """
        直接读取本地序列化文件
    """
    score_tuple_array = ABuFileUtil.load_pickle(score_fn)

    from abupy import WrsmScorer
    # 实例化WrsmScorer,参数weights,只有第二项为1,其他都是0,
    # 代表只考虑投资回报来评分
    scorer = WrsmScorer(score_tuple_array, weights=[0, 1, 0, 0])
    # 返回排序后的队列
    scorer_returns_max = scorer.fit_score()
    # 因为是倒序排序,所以index最后一个为最优参数
    best_score_tuple_grid = score_tuple_array[scorer_returns_max.index[-1]]
    # 由于篇幅,最优结果只打印文字信息
    AbuMetricsBase.show_general(best_score_tuple_grid.orders_pd,
                                best_score_tuple_grid.action_pd,
                                best_score_tuple_grid.capital,
                                best_score_tuple_grid.benchmark,
                                only_info=True)

    # 最后打印出只考虑投资回报下最优结果使用的买入策略和卖出策略
    print('best_score_tuple_grid.buy_factors, best_score_tuple_grid.sell_factors:\n', best_score_tuple_grid.buy_factors,
          best_score_tuple_grid.sell_factors)
Exemplo n.º 6
0
Arquivo: c9.py Projeto: zly111/abu
def sample_935_1():
    """
    9.3.5_1 不同权重的评分: 只考虑投资回报来评分
    :return:
    """
    from abupy import ABuFileUtil
    score_fn = '../gen/score_tuple_array'
    if not ABuFileUtil.file_exist(score_fn):
        print('../gen/score_tuple_array not exist! please execute sample_933 first!')
        return

    """
        直接读取本地序列化文件
    """
    score_tuple_array = ABuFileUtil.load_pickle(score_fn)

    from abupy import WrsmScorer
    # 实例化WrsmScorer,参数weights,只有第二项为1,其他都是0,
    # 代表只考虑投资回报来评分
    scorer = WrsmScorer(score_tuple_array, weights=[0, 1, 0, 0])
    # 返回排序后的队列
    scorer_returns_max = scorer.fit_score()
    # 因为是倒序排序,所以index最后一个为最优参数
    best_score_tuple_grid = score_tuple_array[scorer_returns_max.index[-1]]
    # 由于篇幅,最优结果只打印文字信息
    AbuMetricsBase.show_general(best_score_tuple_grid.orders_pd,
                                best_score_tuple_grid.action_pd,
                                best_score_tuple_grid.capital,
                                best_score_tuple_grid.benchmark,
                                only_info=True)

    # 最后打印出只考虑投资回报下最优结果使用的买入策略和卖出策略
    print('best_score_tuple_grid.buy_factors, best_score_tuple_grid.sell_factors:\n', best_score_tuple_grid.buy_factors,
          best_score_tuple_grid.sell_factors)
Exemplo n.º 7
0
Arquivo: c9.py Projeto: zly111/abu
def sample_933():
    """
    9.3.3 GridSearch寻找最优参数
    :return:
    """
    from abupy import GridSearch

    read_cash = 1000000
    choice_symbols = ['usNOAH', 'usSFUN', 'usBIDU', 'usAAPL', 'usGOOG',
                      'usTSLA', 'usWUBA', 'usVIPS']

    sell_factors_product, buy_factors_product = sample_932(show=False)

    grid_search = GridSearch(read_cash, choice_symbols,
                             buy_factors_product=buy_factors_product,
                             sell_factors_product=sell_factors_product)

    from abupy import ABuFileUtil
    """
        注意下面的运行耗时大约1小时多,如果所有cpu都用上的话,也可以设置n_jobs为 < cpu进程数,一边做其它的一边跑
    """
    # 运行GridSearch n_jobs=-1启动cpu个数的进程数
    scores, score_tuple_array = grid_search.fit(n_jobs=-1)

    """
        针对运行完成输出的score_tuple_array可以使用dump_pickle保存在本地,以方便修改其它验证效果。
    """
    ABuFileUtil.dump_pickle(score_tuple_array, '../gen/score_tuple_array')

    print('组合因子参数数量{}'.format(len(buy_factors_product) * len(sell_factors_product)))
    print('最终评分结果数量{}'.format(len(scores)))

    best_score_tuple_grid = grid_search.best_score_tuple_grid
    AbuMetricsBase.show_general(best_score_tuple_grid.orders_pd, best_score_tuple_grid.action_pd,
                                best_score_tuple_grid.capital, best_score_tuple_grid.benchmark)
Exemplo n.º 8
0
def load_score_cache():
    """有本地数据score_tuple_array后,即可以从本地缓存读取score_tuple_array"""
    global scores, score_tuple_array

    with AbuBlockProgress('load score cache'):
        score_tuple_array = ABuFileUtil.load_pickle('../gen/score_tuple_array')
        if not hasattr(grid_search, 'best_score_tuple_grid'):
            # load_pickle的grid_search没有赋予best_score_tuple_grid,这里补上
            from abupy import make_scorer, WrsmScorer
            scores = make_scorer(score_tuple_array, WrsmScorer)
            grid_search.best_score_tuple_grid = score_tuple_array[
                scores.index[-1]]
        print('load complete!')
Exemplo n.º 9
0
Arquivo: c9.py Projeto: 3774257/abu
def sample_934():
    """
    9.3.4 度量结果的评分
    :return:
    """
    from abupy import ABuFileUtil
    score_fn = '../gen/score_tuple_array'
    if not ABuFileUtil.file_exist(score_fn):
        print('../gen/score_tuple_array not exist! please execute sample_933 first!')
        return

    """
        直接读取本地序列化文件
    """
    score_tuple_array = ABuFileUtil.load_pickle(score_fn)
    from abupy import WrsmScorer
    # 实例化一个评分类WrsmScorer,它的参数为之前GridSearch返回的score_tuple_array对象
    scorer = WrsmScorer(score_tuple_array)
    print('scorer.score_pd.tail():\n', scorer.score_pd.tail())

    # score_tuple_array[658]与grid_search.best_score_tuple_grid是一致的
    sfs = scorer.fit_score()
    # 打印前15个高分组合
    print('sfs[::-1][:15]:\n', sfs[::-1][:15])
Exemplo n.º 10
0
def run_grid_search():
    global scores, score_tuple_array
    # 运行GridSearch n_jobs=-1启动cpu个数的进程数
    scores, score_tuple_array = grid_search.fit(n_jobs=-1)
    # 运行完成输出的score_tuple_array可以使用dump_pickle保存在本地,以方便之后使用
    ABuFileUtil.dump_pickle(score_tuple_array, '../gen/score_tuple_array')