Exemplo n.º 1
0
    def __init__(self):
        acado = self.acado = AcadoConnect(model=env.model)
        acado.setTimeInterval(1.0)
        acado.options['steps'] = 10
        acado.options['shift'] = 0
        acado.options['iter'] = 20
        acado.options['friction'] = 0.2
        acado.setTimeInterval(1.0)

        self.threshold = 1e-3
Exemplo n.º 2
0
     def __init__(self):
          acado = self.acado = AcadoConnect(acadoPath,
                                            model=env.model,datadir=acadoTxtPath)
          acado.setTimeInterval(1.0)
          acado.options['steps']    = 25
          acado.options['shift']    = 0
          acado.options['iter']     = 20
          acado.options['friction'] = \
              "{0:f} {1:f}".format([env.Kf,]*2) if isinstance(env.Kf,float) \
              else  "{0:f} {1:f}".format(*env.Kf.diagonal())
          acado.options['umax']     = "%.2f %.2f" % tuple([x for x in env.umax])
          acado.options['armature'] = env.armature
          acado.setTimeInterval(1.5)

          self.threshold = 1e-3
          self.acado.setup_async()
          self.idxBest   = None   # Store the index of the best previous trial
Exemplo n.º 3
0
                    for hi, ci in zip(hist[-1], colors):
                        plt.plot(len(hist), hi, ci)
                    plt.draw()

        if track: return hist


# --- OPTIMIZE -----------------------------------------------------
# --- OPTIMIZE -----------------------------------------------------
# --- OPTIMIZE -----------------------------------------------------

# --- SETUP ACADO
from specpath import acadoBinDir, acadoTxtPath
from acado_connect import AcadoConnect

acado = AcadoConnect(acadoBinDir + "connect_bicopter", datadir=acadoTxtPath)
acado.NQ = NQ
acado.NV = NV

acado.options['thetamax'] = np.pi / 2
acado.options['printlevel'] = 1
if 'shift' in acado.options: del acado.options['shift']
if env is not None:
    acado.options['umax'] = "%.2f %.2f" % tuple([x for x in env.umax])

#if 'icontrol' in acado.options: del acado.options['icontrol']
acado.debug(False)
acado.iter = 80
acado.options['steps'] = 20

# --- ROLL OUT
Exemplo n.º 4
0
        dx = x2 - x1
        dq = (dx[:self.NQ] + PI) % PPI - PI
        dv = dx[self.NQ:]
        return np.concatenate([dq, dv])


env = Pendulum(2, length=.5, mass=3.0, armature=.2, withDisplay=True)
env.withSinCos = False  # State is dim-3: (cosq,sinq,qdot) ...
env.vmax = 100.
env.Kf = np.diagflat([0.2, 2.])
env.modulo = False
env.DT = 0.15
env.NDT = 1
env.umax = np.matrix([5., 10.]).T

env.qlow[1] = -np.pi
env.qup = np.matrix([2 * np.pi, np.pi]).T
env.qlow = -env.qup
env.vup = np.matrix([
    3,
] * 2).T
env.vlow = -env.vup

env.xmax = np.matrix([3 * np.pi, np.pi, 8, 8]).T
env.xmin = -env.xmax

acado = AcadoConnect(acadoBinDir + "connect_double_pendulum",
                     datadir=acadoTxtPath)
config(acado, 'connect', env)
acado.setDims(env.nq, env.nv)
Exemplo n.º 5
0
 def states(self, jobid=None):
     X = AcadoConnect.states(self, jobid)
     return X[:, [0, 1, 2, 3, 4, 6, 7, 8, 9, 10]]
Exemplo n.º 6
0
 def __init__(self, *args, **kwargs):
     AcadoConnect.__init__(self, *args, **kwargs)
Exemplo n.º 7
0
            X13 = zero([X.shape[0], self.NQ + self.NV + 3])
            X13[:, :self.NQ] = X[:, :self.NQ]
            X13[:, self.NQ + 1:self.NQ + 1 + self.NV] = X[:, self.NQ:self.NQ +
                                                          self.NV]
            np.savetxt(self.stateFile('i', jobid),
                       np.vstack([T / T[-1], X.T]).T)
        if U is not None and 'icontrol' in self.options:
            np.savetxt(self.controlFile('i', jobid),
                       np.vstack([T / T[-1], U.T]).T)
        return X, U, T

    # def run(self,x0,x1,*args,**kwargs):
    #     jobid = self.run_async(x0,x1,*args,**kwargs)
    #     try:
    #         return self.join(jobid,x0,x1,timeout = 10)
    #     except:
    #         return False


dataRootPath = 'data/planner/quadcopterobs'
env = Quadcopter(withDisplay=False)

env.sphericalObstacle = True
env.obstacleSize = 1.
env.obstaclePosition = np.matrix([2., 2., 0.]).T

#acado = AcadoQuadConnect(acadoBinDir + "connect_quadcopter",
acado = AcadoConnect(acadoBinDir + "connect_quadcopter", datadir=acadoTxtPath)
config(acado, 'connect', env)
acado.setDims(env.nq, env.nv)
Exemplo n.º 8
0
            return False

    def states(self):
        return self.acado.states()

    def controls(self):
        return self.acado.controls()

    def cost(self):
        return self.acado.opttime()

    def times(self):
        return self.acado.times()

    def time(self):
        return self.acado.opttime()


class BicopterStateDiff:
    '''Given two states (of the bicopter) returns the delta (Lie exponential) 
     to go from x1 to x2.'''
    def __call__(self, x1, x2):
        return x2 - x1


# ---

env = Bicopter(withDisplay=False)
acado = AcadoConnect(acadoBinDir + "connect_bicopter", datadir=acadoTxtPath)
config(acado, 'connect', env)
Exemplo n.º 9
0
NX                  = env.nobs          # ... training converges with q,qdot with 2x more neurones.
NU                  = env.nu            # Control is dim-1: joint torque

env.vmax            = 100.
env.Kf              = np.diagflat([ 0.2, 2. ])
env.modulo          = False
env.DT              = 0.15
env.NDT             = 1
env.umax            = np.matrix([5.,10.]).T

env.qlow[1]         = -np.pi
env.qup [1]         = +np.pi


acado = AcadoConnect(acadoPath,
                     model=env.model,
                     datadir=acadoTxtPath)
config(acado,'connect',env)

# --- PRM ---
# --- PRM ---
# --- PRM ---
prm = PRM(GraphPendulumDouble(),
          sampler = env.reset,
          checker = lambda x:True,
          nearestNeighbor = NearestNeighbor(DistanceSO3([1,.1])),
          connect = ConnectAcado(acado))

if LOAD_PRM:
     prm.graph.load(dataRootPath)