Exemplo n.º 1
0
def main(discretization='shooting_nodes'):
    # create ocp object to formulate the OCP
    ocp = AcadosOcp()

    # set model
    model = export_pendulum_ode_model()
    ocp.model = model

    integrator_type = 'LIFTED_IRK'  # ERK, IRK, GNSF, LIFTED_IRK

    if integrator_type == 'GNSF':
        acados_dae_model_json_dump(model)
        # structure detection in Matlab/Octave -> produces 'pendulum_ode_gnsf_functions.json'
        status = os.system('octave detect_gnsf_from_json.m')
        # load gnsf from json
        with open(model.name + '_gnsf_functions.json', 'r') as f:
            gnsf_dict = json.load(f)
        ocp.gnsf_model = gnsf_dict

    Tf = 1.0
    nx = model.x.size()[0]
    nu = model.u.size()[0]
    ny = nx + nu
    ny_e = nx
    N = 15

    # discretization
    ocp.dims.N = N
    # shooting_nodes = np.linspace(0, Tf, N+1)

    time_steps = np.linspace(0, 1, N)
    time_steps = Tf * time_steps / sum(time_steps)

    shooting_nodes = np.zeros((N + 1, ))
    for i in range(len(time_steps)):
        shooting_nodes[i + 1] = shooting_nodes[i] + time_steps[i]

    # nonuniform discretizations can be defined either by shooting_nodes or time_steps:
    if discretization == 'shooting_nodes':
        ocp.solver_options.shooting_nodes = shooting_nodes
    elif discretization == 'time_steps':
        ocp.solver_options.time_steps = time_steps
    else:
        raise NotImplementedError(
            f"discretization type {discretization} not supported.")

    # set num_steps
    ocp.solver_options.sim_method_num_steps = 2 * np.ones((N, ))
    ocp.solver_options.sim_method_num_steps[0] = 3

    # set num_stages
    ocp.solver_options.sim_method_num_stages = 2 * np.ones((N, ))
    ocp.solver_options.sim_method_num_stages[0] = 4

    # set cost
    Q = 2 * np.diag([1e3, 1e3, 1e-2, 1e-2])
    R = 2 * np.diag([1e-2])

    ocp.cost.W_e = Q
    ocp.cost.W = scipy.linalg.block_diag(Q, R)

    ocp.cost.cost_type = 'LINEAR_LS'
    ocp.cost.cost_type_e = 'LINEAR_LS'

    ocp.cost.Vx = np.zeros((ny, nx))
    ocp.cost.Vx[:nx, :nx] = np.eye(nx)

    Vu = np.zeros((ny, nu))
    Vu[4, 0] = 1.0
    ocp.cost.Vu = Vu

    ocp.cost.Vx_e = np.eye(nx)

    ocp.cost.yref = np.zeros((ny, ))
    ocp.cost.yref_e = np.zeros((ny_e, ))

    # set constraints
    Fmax = 80
    ocp.constraints.lbu = np.array([-Fmax])
    ocp.constraints.ubu = np.array([+Fmax])

    x0 = np.array([0.0, np.pi, 0.0, 0.0])
    ocp.constraints.x0 = x0
    ocp.constraints.idxbu = np.array([0])

    ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM'  # FULL_CONDENSING_QPOASES
    ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
    ocp.solver_options.integrator_type = integrator_type
    ocp.solver_options.print_level = 0
    ocp.solver_options.nlp_solver_type = 'SQP'  # SQP_RTI, SQP

    # set prediction horizon
    ocp.solver_options.tf = Tf
    ocp.solver_options.initialize_t_slacks = 1

    # Set additional options for Simulink interface:
    acados_path = get_acados_path()
    json_path = os.path.join(acados_path,
                             'interfaces/acados_template/acados_template')
    with open(json_path + '/simulink_default_opts.json', 'r') as f:
        simulink_opts = json.load(f)
    ocp_solver = AcadosOcpSolver(ocp,
                                 json_file='acados_ocp.json',
                                 simulink_opts=simulink_opts)

    # ocp_solver = AcadosOcpSolver(ocp, json_file = 'acados_ocp.json')

    simX = np.ndarray((N + 1, nx))
    simU = np.ndarray((N, nu))

    # change options after creating ocp_solver
    ocp_solver.options_set("step_length", 0.99999)
    ocp_solver.options_set("globalization",
                           "fixed_step")  # fixed_step, merit_backtracking
    ocp_solver.options_set("tol_eq", TOL)
    ocp_solver.options_set("tol_stat", TOL)
    ocp_solver.options_set("tol_ineq", TOL)
    ocp_solver.options_set("tol_comp", TOL)

    # initialize solver
    for i in range(N):
        ocp_solver.set(i, "x", x0)
    status = ocp_solver.solve()

    if status not in [0, 2]:
        raise Exception('acados returned status {}. Exiting.'.format(status))

    # get primal solution
    for i in range(N):
        simX[i, :] = ocp_solver.get(i, "x")
        simU[i, :] = ocp_solver.get(i, "u")
    simX[N, :] = ocp_solver.get(N, "x")

    print("inequality multipliers at stage 1")
    print(ocp_solver.get(1, "lam"))  # inequality multipliers at stage 1
    print("slack values at stage 1")
    print(ocp_solver.get(1, "t"))  # slack values at stage 1
    print("multipliers of dynamic conditions between stage 1 and 2")
    print(ocp_solver.get(
        1, "pi"))  # multipliers of dynamic conditions between stage 1 and 2

    # initialize ineq multipliers and slacks at stage 1
    ocp_solver.set(1, "lam", np.zeros(2, ))
    ocp_solver.set(1, "t", np.zeros(2, ))

    ocp_solver.print_statistics(
    )  # encapsulates: stat = ocp_solver.get_stats("statistics")

    # timings
    time_tot = ocp_solver.get_stats("time_tot")
    time_lin = ocp_solver.get_stats("time_lin")
    time_sim = ocp_solver.get_stats("time_sim")
    time_qp = ocp_solver.get_stats("time_qp")

    print(
        f"timings OCP solver: total: {1e3*time_tot}ms, lin: {1e3*time_lin}ms, sim: {1e3*time_sim}ms, qp: {1e3*time_qp}ms"
    )
    # print("simU", simU)
    # print("simX", simX)
    iterate_filename = f'final_iterate_{discretization}.json'
    ocp_solver.store_iterate(filename=iterate_filename, overwrite=True)

    plot_pendulum(shooting_nodes, Fmax, simU, simX, latexify=False)
    del ocp_solver
Exemplo n.º 2
0
def main(interface_type='ctypes'):

    # create ocp object to formulate the OCP
    ocp = AcadosOcp()

    # set model
    model = export_pendulum_ode_model()
    ocp.model = model

    nx = model.x.size()[0]
    nu = model.u.size()[0]
    ny = nx + nu
    ny_e = nx

    # define the different options for the use-case demonstration
    N0 = 20  # original number of shooting nodes
    N12 = 15  # change the number of shooting nodes for use-cases 1 and 2
    condN12 = max(1, round(N12/1)) # change the number of cond_N for use-cases 1 and 2 (for PARTIAL_* solvers only)
    Tf_01 = 1.0  # original final time and for use-case 1
    Tf_2 = Tf_01 * 0.7  # change final time for use-case 2 (but keep N identical)

    # set dimensions
    ocp.dims.N = N0

    # set cost
    Q = 2 * np.diag([1e3, 1e3, 1e-2, 1e-2])
    R = 2 * np.diag([1e-2])

    ocp.cost.W_e = Q
    ocp.cost.W = scipy.linalg.block_diag(Q, R)

    ocp.cost.cost_type = 'LINEAR_LS'
    ocp.cost.cost_type_e = 'LINEAR_LS'

    ocp.cost.Vx = np.zeros((ny, nx))
    ocp.cost.Vx[:nx, :nx] = np.eye(nx)

    Vu = np.zeros((ny, nu))
    Vu[4, 0] = 1.0
    ocp.cost.Vu = Vu

    ocp.cost.Vx_e = np.eye(nx)

    ocp.cost.yref = np.zeros((ny,))
    ocp.cost.yref_e = np.zeros((ny_e,))

    # set constraints
    Fmax = 80
    ocp.constraints.lbu = np.array([-Fmax])
    ocp.constraints.ubu = np.array([+Fmax])
    ocp.constraints.idxbu = np.array([0])

    ocp.constraints.x0 = np.array([0.0, np.pi, 0.0, 0.0])

    # set options
    ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM'  # FULL_CONDENSING_QPOASES
    # PARTIAL_CONDENSING_HPIPM, FULL_CONDENSING_QPOASES, FULL_CONDENSING_HPIPM,
    # PARTIAL_CONDENSING_QPDUNES, PARTIAL_CONDENSING_OSQP
    ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
    ocp.solver_options.integrator_type = 'ERK'
    # ocp.solver_options.print_level = 1
    ocp.solver_options.nlp_solver_type = 'SQP'  # SQP_RTI, SQP

    # set prediction horizon
    ocp.solver_options.tf = Tf_01

    print(80*'-')
    print('generate code and compile...')

    if interface_type == 'cython':
        AcadosOcpSolver.generate(ocp, json_file='acados_ocp.json')
        AcadosOcpSolver.build(ocp.code_export_directory, with_cython=True)
        ocp_solver = AcadosOcpSolver.create_cython_solver('acados_ocp.json')
    elif interface_type == 'ctypes':
        ocp_solver = AcadosOcpSolver(ocp, json_file='acados_ocp.json')
    elif interface_type == 'cython_prebuilt':
        from c_generated_code.acados_ocp_solver_pyx import AcadosOcpSolverCython
        ocp_solver = AcadosOcpSolverCython(ocp.model.name, ocp.solver_options.nlp_solver_type, ocp.dims.N)


    # test setting HPIPM options
    ocp_solver.options_set('qp_tol_ineq', 1e-8)
    ocp_solver.options_set('qp_tau_min', 1e-10)
    ocp_solver.options_set('qp_mu0', 1e0)

    # --------------------------------------------------------------------------------
    # 0) solve the problem defined here (original from code export), analog to 'minimal_example_ocp.py'
    nvariant = 0
    simX0 = np.ndarray((N0 + 1, nx))
    simU0 = np.ndarray((N0, nu))

    print(80*'-')
    print(f'solve original code with N = {N0} and Tf = {Tf_01} s:')
    status = ocp_solver.solve()

    if status != 0:
        ocp_solver.print_statistics()  # encapsulates: stat = ocp_solver.get_stats("statistics")
        raise Exception(f'acados returned status {status}.')

    # get solution
    for i in range(N0):
        simX0[i, :] = ocp_solver.get(i, "x")
        simU0[i, :] = ocp_solver.get(i, "u")
    simX0[N0, :] = ocp_solver.get(N0, "x")

    ocp_solver.print_statistics()  # encapsulates: stat = ocp_solver.get_stats("statistics")
    ocp_solver.store_iterate(filename=f'final_iterate_{interface_type}_variant{nvariant}.json', overwrite=True)

    if PLOT:# plot but don't halt
        plot_pendulum(np.linspace(0, Tf_01, N0 + 1), Fmax, simU0, simX0, latexify=False, plt_show=False, X_true_label=f'original: N={N0}, Tf={Tf_01}')
Exemplo n.º 3
0
ocp_solver.print_statistics()

if status != 0:
    raise Exception(f'acados returned status {status}.')

# get solution
for i in range(N):
    simX[i,:] = ocp_solver.get(i, "x")
    simU[i,:] = ocp_solver.get(i, "u")
simX[N,:] = ocp_solver.get(N, "x")


# plot results
plot_pendulum(np.linspace(0, Tf, N+1), Fmax, simU, simX, latexify=False)

ocp_solver.store_iterate(filename='solution.json', overwrite=True)
ocp_solver.load_iterate(filename='solution.json')

# timings
# time_tot = 1e8
# time_lin = 1e8

# for k in range(1000):

#     status = ocp_solver.solve()
#     time_tot = min(time_tot, ocp_solver.get_stats("time_tot")[0])
#     time_lin = min(time_lin, ocp_solver.get_stats("time_lin")[0])

# print("CPU time = ", time_tot * 1e3, "ms")
# print("CPU time linearization = ", time_lin * 1e3, "ms")