Exemplo n.º 1
0
    def __init__(self, gpu=False, device=0):
        self.NODE_LEVEL = {
            "attractor_basin":
            FeatureMeta(AttractorBasinCalculator, {"ab"}),  # Directed
            "average_neighbor_degree":
            FeatureMeta(AverageNeighborDegreeCalculator, {"avg_nd"}),  # Any
            "betweenness_centrality":
            FeatureMeta(BetweennessCentralityCalculator,
                        {"betweenness"}),  # Any
            "bfs_moments":
            FeatureMeta(BfsMomentsCalculator, {"bfs"}),  # Any
            "closeness_centrality":
            FeatureMeta(ClosenessCentralityCalculator, {"closeness"}),  # Any
            "communicability_betweenness_centrality":
            FeatureMeta(CommunicabilityBetweennessCentralityCalculator,
                        {"communicability"}),  # Undirected
            "eccentricity":
            FeatureMeta(EccentricityCalculator, {"ecc"}),  # Any
            "fiedler_vector":
            FeatureMeta(FiedlerVectorCalculator,
                        {"fv"}),  # Undirected (due to a code limitation)
            "flow":
            FeatureMeta(FlowCalculator, {}),  # Directed
            # General - calculating degrees. Directed will get (in_deg, out_deg) and undirected will get degree only per vertex.
            "general":
            FeatureMeta(GeneralCalculator, {"gen"}),  # Any
            "hierarchy_energy":
            FeatureMeta(HierarchyEnergyCalculator,
                        {"hierarchy"}),  # Directed (but works for any)
            "k_core":
            FeatureMeta(KCoreCalculator, {"kc"}),  # Any
            "load_centrality":
            FeatureMeta(LoadCentralityCalculator, {"load_c"}),  # Any
            "louvain":
            FeatureMeta(LouvainCalculator, {"lov"}),  # Undirected
            "motif3":
            FeatureMeta(nth_nodes_motif(3, gpu, device), {"m3"}),  # Any
            "page_rank":
            FeatureMeta(PageRankCalculator,
                        {"pr"}),  # Directed (but works for any)
            "motif4":
            FeatureMeta(nth_nodes_motif(4, gpu, device), {"m4"}),  # Any
        }

        self.MOTIFS = {
            "motif3": FeatureMeta(nth_nodes_motif(3, gpu, device), {"m3"}),
            "motif4": FeatureMeta(nth_nodes_motif(4, gpu, device), {"m4"})
        }
        """
Exemplo n.º 2
0
 def __init__(self, params, graph, dir_path, gpu, device):
     self._params = params
     self._graph = graph
     self._dir_path = dir_path
     self._mp = MotifProbability(self._params["vertices"],
                                 self._params["probability"],
                                 self._params["clique_size"],
                                 self._params["directed"])
     self._motif_mat = None
     self._motif_features = {
         "motif3":
         FeatureMeta(nth_nodes_motif(3, gpu=gpu, device=device), {"m3"}),
         "motif4":
         FeatureMeta(nth_nodes_motif(4, gpu=gpu, device=device), {"m4"})
     }
    def __init__(self, gpu=False):
        self.NODE_LEVEL = {
            "attractor_basin":
            FeatureMeta(AttractorBasinCalculator, {"ab"}),
            "average_neighbor_degree":
            FeatureMeta(AverageNeighborDegreeCalculator, {"avg_nd"}),
            "betweenness_centrality":
            FeatureMeta(BetweennessCentralityCalculator, {"betweenness"}),
            "bfs_moments":
            FeatureMeta(BfsMomentsCalculator, {"bfs"}),
            "closeness_centrality":
            FeatureMeta(ClosenessCentralityCalculator, {"closeness"}),
            "communicability_betweenness_centrality":
            FeatureMeta(CommunicabilityBetweennessCentralityCalculator,
                        {"communicability"}),
            "eccentricity":
            FeatureMeta(EccentricityCalculator, {"ecc"}),
            "fiedler_vector":
            FeatureMeta(FiedlerVectorCalculator, {"fv"}),
            "flow":
            FeatureMeta(FlowCalculator, {}),
            "general":
            FeatureMeta(GeneralCalculator, {"gen"}),
            "hierarchy_energy":
            FeatureMeta(HierarchyEnergyCalculator, {"hierarchy"}),
            "k_core":
            FeatureMeta(KCoreCalculator, {"kc"}),
            "load_centrality":
            FeatureMeta(LoadCentralityCalculator, {"load_c"}),
            "louvain":
            FeatureMeta(LouvainCalculator, {"lov"}),
            "motif3":
            FeatureMeta(nth_nodes_motif(3, gpu), {"m3"}),
            "page_rank":
            FeatureMeta(PageRankCalculator, {"pr"}),
            "motif4":
            FeatureMeta(nth_nodes_motif(4, gpu), {"m4"}),
        }

        self.MOTIFS = {
            "motif3": FeatureMeta(nth_nodes_motif(3, gpu), {"m3"}),
            "motif4": FeatureMeta(nth_nodes_motif(4, gpu), {"m4"})
        }
Exemplo n.º 4
0
 def _calc_motif3(self):
     raw_ftr = GraphFeatures(self._graph, {
         "motif3":
         FeatureMeta(nth_nodes_motif(3, gpu=self._gpu, device=self._device),
                     {"m3"})
     },
                             dir_path=self._dir_path)
     raw_ftr.build(should_dump=self._dump)
     feature = raw_ftr['motif3']._features
     if type(feature) == dict:
         motif_matrix = self._to_matrix(feature)
     else:
         motif_matrix = feature
     return self._log_norm(motif_matrix)
 def _calc_motif4(self):
     # FOR NOW, NO GPU FOR US
     if os.path.exists(os.path.join(self._dir_path, "motif4.pkl")):
         pkl4 = pickle.load(
             open(os.path.join(self._dir_path, "motif4.pkl"), "rb"))
         if type(pkl4) == dict:
             motif4 = self._to_matrix(pkl4)
         elif type(pkl4) == MotifsNodeCalculator:
             motif4 = np.array(pkl4._features)
         else:
             motif4 = np.array(pkl4)
         if self._motif_choice == "All_Motifs":
             mp = MotifProbability(self._params['vertices'],
                                   self._params['probability'],
                                   self._params['clique_size'],
                                   self._params['directed'])
             motif3_count = 1 + mp.get_3_clique_motifs(3)[
                 -1]  # The full 3 clique is the last motif 3.
             clique_motifs = [
                 m - motif3_count for m in mp.get_3_clique_motifs(4)
             ]
             return motif4[:, clique_motifs]
         else:
             return motif4
     raw_ftr = GraphFeatures(self._graph, {
         "motif4":
         FeatureMeta(nth_nodes_motif(4, gpu=self._gpu, device=self._device),
                     {"m4"})
     },
                             dir_path=self._dir_path)
     raw_ftr.build(should_dump=True)
     feature = raw_ftr['motif4']._features
     if type(feature) == dict:
         motif_matrix = self._to_matrix(feature)
     else:
         motif_matrix = feature
     normed_matrix = self._log_norm(motif_matrix)
     if self._motif_choice == "All_Motifs":
         mp = MotifProbability(self._params['vertices'],
                               self._params['probability'],
                               self._params['clique_size'],
                               self._params['directed'])
         motif3_count = 1 + mp.get_3_clique_motifs(3)[
             -1]  # The full 3 clique is the last motif 3.
         clique_motifs = [
             m - motif3_count for m in mp.get_3_clique_motifs(4)
         ]
         return normed_matrix[:, clique_motifs]
     else:
         return normed_matrix
Exemplo n.º 6
0
 def _calc_motif4(self):
     raw_ftr = GraphFeatures(self._graph, {
         "motif4":
         FeatureMeta(nth_nodes_motif(4, gpu=self._gpu, device=self._device),
                     {"m4"})
     },
                             dir_path="")
     raw_ftr.build(should_dump=False)
     feature = raw_ftr['motif4']._features
     if type(feature) == dict:
         motif_matrix = self._to_matrix(feature)
     else:
         motif_matrix = feature
     normed_matrix = self._log_norm(motif_matrix)
     return normed_matrix
 def _calc_motif3(self):
     raw_ftr = GraphFeatures(self._graph,
                             {"motif3": FeatureMeta(nth_nodes_motif(3, gpu=self._gpu, device=self._device), {"m3"})},
                             dir_path=self._dir_path)
     raw_ftr.build(should_dump=True)
     feature = raw_ftr['motif3']._features
     if type(feature) == dict:
         motif_matrix = self._to_matrix(feature)
     else:
         motif_matrix = feature
     normed_matrix = self._log_norm(motif_matrix)
     if self._motif_choice == "All_Motifs":
         mp = MotifProbability(self._params['vertices'], self._params['probability'],
                               self._params['subgraph_size'], self._params['directed'])
         clique_motifs = mp.get_3_clique_motifs(3)
         return normed_matrix[:, clique_motifs]
     else:
         return normed_matrix
 def _calc_motif4(self):
     raw_ftr = GraphFeatures(self._graph,
                             {"motif4": FeatureMeta(nth_nodes_motif(4, gpu=self._gpu, device=self._device), {"m4"})},
                             dir_path=self._dir_path)
     raw_ftr.build(should_dump=True)
     feature = raw_ftr['motif4']._features
     if type(feature) == dict:
         motif_matrix = self._to_matrix(feature)
     else:
         motif_matrix = feature
     normed_matrix = self._log_norm(motif_matrix)
     if self._motif_choice == "All_Motifs":
         mp = MotifProbability(self._params['vertices'], self._params['probability'],
                               self._params['subgraph_size'], self._params['directed'])
         motif3_count = 1 + mp.get_3_clique_motifs(3)[-1]  # The full 3 clique is the last motif 3.
         clique_motifs = [m - motif3_count for m in mp.get_3_clique_motifs(4)]
         return normed_matrix[:, clique_motifs]
     else:
         return normed_matrix
 def _calc_motif3(self):
     # FOR NOW, NO GPU FOR US
     if os.path.exists(os.path.join(self._dir_path, "motif3.pkl")):
         pkl3 = pickle.load(
             open(os.path.join(self._dir_path, "motif3.pkl"), "rb"))
         if type(pkl3) == dict:
             motif3 = self._to_matrix(pkl3)
         elif type(pkl3) == MotifsNodeCalculator:
             motif3 = np.array(pkl3._features)
         else:
             motif3 = np.array(pkl3)
         if self._motif_choice == "All_Motifs":
             mp = MotifProbability(self._params['vertices'],
                                   self._params['probability'],
                                   self._params['clique_size'],
                                   self._params['directed'])
             clique_motifs = mp.get_3_clique_motifs(3)
             return motif3[:, clique_motifs]
         else:
             return motif3
     raw_ftr = GraphFeatures(self._graph, {
         "motif3":
         FeatureMeta(nth_nodes_motif(3, gpu=self._gpu, device=self._device),
                     {"m3"})
     },
                             dir_path=self._dir_path)
     raw_ftr.build(should_dump=True)
     feature = raw_ftr['motif3']._features
     if type(feature) == dict:
         motif_matrix = self._to_matrix(feature)
     else:
         motif_matrix = feature
     normed_matrix = self._log_norm(motif_matrix)
     if self._motif_choice == "All_Motifs":
         mp = MotifProbability(self._params['vertices'],
                               self._params['probability'],
                               self._params['clique_size'],
                               self._params['directed'])
         clique_motifs = mp.get_3_clique_motifs(3)
         return normed_matrix[:, clique_motifs]
     else:
         return normed_matrix