Exemplo n.º 1
0
    def __init__(self,
                 device_id,
                 model_path,
                 model_input_width,
                 model_input_height):
        self.device_id = device_id      # int
        self.model_path = model_path    # string
        self.model_id = None            # pointer
        self.context = None             # pointer

        self.input_data = None
        self.output_data = None
        self.model_desc = None          # pointer when using
        self.load_input_dataset = None
        self.load_output_dataset = None
        self.init_resource()

        self._model_input_width = model_input_width
        self._model_input_height = model_input_height

        self.model_process = Model(self.context,
                                   self.stream,
                                   self.model_path)

        self.dvpp_process = Dvpp(self.stream,
                                 model_input_width,
                                 model_input_height)

        self.sing_op = SingleOp(self.stream)
Exemplo n.º 2
0
class Classify(object):
    """
	define gesture class
    """
    def __init__(self, acl_resource, model_path, model_width, model_height):
        self._model_path = model_path
        self._model_width = model_width
        self._model_height = model_height
        self._dvpp = Dvpp(acl_resource)
        self._model = Model(model_path)

    def __del__(self):
        if self._dvpp:
            del self._dvpp
        print("[Sample] class Samle release source success")

    def pre_process(self, image):
        """
        pre_precess
        """
        yuv_image = self._dvpp.jpegd(image)
        resized_image = self._dvpp.resize(yuv_image, self._model_width,
                                          self._model_height)
        print("resize yuv end")
        return resized_image

    def inference(self, resized_image):
        """
	    inference
        """
        return self._model.execute([
            resized_image,
        ])

    def post_process(self, infer_output, image_file):
        """
	    post_process
        """
        print("post process")
        data = infer_output[0]
        vals = data.flatten()
        top_k = vals.argsort()[-1:-6:-1]
        print("images:{}".format(image_file))
        print("======== top5 inference results: =============")
        for n in top_k:
            object_class = image_net_classes.get_image_net_class(n)
            print("label:%d  confidence: %f, class: %s" %
                  (n, vals[n], object_class))

        #using pillow, the category with the highest confidence is written on the image and saved locally
        if len(top_k):
            object_class = image_net_classes.get_image_net_class(top_k[0])
            output_path = os.path.join(os.path.join(SRC_PATH, "../outputs"),
                                       os.path.basename(image_file))
            origin_img = Image.open(image_file)
            draw = ImageDraw.Draw(origin_img)
            font = ImageFont.load_default()
            draw.text((10, 50), object_class, font=font, fill=255)
            origin_img.save(output_path)
Exemplo n.º 3
0
    def __init__(self, acl_resource, model_path, model_width, model_height):
        self.total_buffer = None
        self._model_path = model_path
        self._model_width = model_width
        self._model_height = model_height

        self._model = Model(model_path)
        self._dvpp = Dvpp(acl_resource)
        print("The App arg is __init__")
Exemplo n.º 4
0
 def __init__(self, acl_resource, model_width, model_height):
     self._acl_resource = acl_resource
     self._model_width = model_width
     self._model_height = model_height
     #使用dvpp处理图像,当使用opencv或者PIL时则不需要创建dvpp实例
     self._dvpp = Dvpp(acl_resource)
     #创建yolov3网络的图像信息输入数据
     self._image_info = np.array([model_width, model_height,
                                  model_width, model_height],
                                  dtype=np.float32)
Exemplo n.º 5
0
    def init(self):
        self._init_resource()
        self._dvpp = Dvpp(self.stream, self.run_mode)

        ret = self._dvpp.init_resource()
        if ret != SUCCESS:
            print("Init dvpp failed")
            return FAILED

        self._model = Model(self.run_mode, self._model_path)
        ret = self._model.init_resource()
        if ret != SUCCESS:
            print("Init model failed")
            return FAILED

        return SUCCESS
Exemplo n.º 6
0
 def __init__(self, device_id, model_path, vdec_out_path, model_input_width,
              model_input_height):
     self.device_id = device_id  # int
     self.model_path = model_path  # string
     self.context = None  # pointer
     self.stream = None
     self.model_input_width = model_input_width
     self.model_input_height = model_input_height,
     self.init_resource()
     self.model_process = Model(self.context, self.stream, model_path)
     self.vdec_process = Vdec(self.context, self.stream, vdec_out_path)
     self.dvpp_process = Dvpp(self.stream, model_input_width,
                              model_input_height)
     self.model_input_width = model_input_width
     self.model_input_height = model_input_height
     self.vdec_out_path = vdec_out_path
Exemplo n.º 7
0
class Classify(object):
    def __init__(self, model_path, model_width, model_height):
        self.device_id = 0
        self.context = None
        self.stream = None
        self._model = None
        self.run_mode = None
        self._model_path = model_path
        self._model_width = model_width
        self._model_height = model_height
        self._dvpp = None

    def __del__(self):
        if self._model:
            del self._model
        if self._dvpp:
            del self._dvpp
        if self.stream:
            acl.rt.destroy_stream(self.stream)
        if self.context:
            acl.rt.destroy_context(self.context)
        acl.rt.reset_device(self.device_id)
        acl.finalize()
        print("[Sample]  Sample release source success")

    def _init_resource(self):
        print("[Sample] init resource stage:")

        ret = acl.init()
        check_ret("acl.rt.set_device", ret)
        ret = acl.rt.set_device(self.device_id)
        check_ret("acl.rt.set_device", ret)

        self.context, ret = acl.rt.create_context(self.device_id)
        check_ret("acl.rt.create_context", ret)

        self.stream, ret = acl.rt.create_stream()
        check_ret("acl.rt.create_stream", ret)

        self.run_mode, ret = acl.rt.get_run_mode()
        check_ret("acl.rt.get_run_mode", ret)
        print("Init resource stage success")

    def init(self):
        self._init_resource()
        self._dvpp = Dvpp(self.stream, self.run_mode)

        ret = self._dvpp.init_resource()
        if ret != SUCCESS:
            print("Init dvpp failed")
            return FAILED

        self._model = Model(self.run_mode, self._model_path)
        ret = self._model.init_resource()
        if ret != SUCCESS:
            print("Init model failed")
            return FAILED

        return SUCCESS

    def pre_process(self, image):
        yuv_image = self._dvpp.jpegd(image)
        print("decode jpeg end")
        resized_image = self._dvpp.resize(yuv_image, self._model_width,
                                          self._model_height)
        print("resize yuv end")
        return resized_image

    def inference(self, resized_image):
        return self._model.execute(resized_image.data(), resized_image.size)

    def post_process(self, infer_output, image_file):
        print("post process")
        data = infer_output[0]
        vals = data.flatten()
        top_k = vals.argsort()[-1:-6:-1]
        object_class = get_image_net_class(top_k[0])
        output_path = os.path.join(os.path.join(SRC_PATH, "../outputs/"),
                                   'out_' + os.path.basename(image_file))
        origin_img = Image.open(image_file)
        draw = ImageDraw.Draw(origin_img)
        font = ImageFont.load_default()
        font.size = 50
        draw.text((10, 50), object_class, font=font, fill=255)
        origin_img.save(output_path)
        object_class = get_image_net_class(top_k[0])
        return object_class
Exemplo n.º 8
0
 def __init__(self, acl_resource, model_path, model_width, model_height):
     self._model_path = model_path
     self._model_width = model_width
     self._model_height = model_height
     self._dvpp = Dvpp(acl_resource)
     self._model = Model(model_path)
Exemplo n.º 9
0
class Classify(object):
    def __init__(self, model_path, model_width, model_height):
        self.device_id = 0
        self.context = None
        self.stream = None
        self._model_path = model_path
        self._model_width = model_width
        self._model_height = model_height
        self._dvpp = None

    def __del__(self):
        if self._model:
            del self._model
        if self._dvpp:
            del self._dvpp
        if self.stream:
            acl.rt.destroy_stream(self.stream)
        if self.context:
            acl.rt.destroy_context(self.context)
        acl.rt.reset_device(self.device_id)
        acl.finalize()
        print("[Sample] class Samle release source success")

    def destroy(self):
        self.__del__

    def _init_resource(self):
        print("[Sample] init resource stage:")
        #ret = acl.init()
        #check_ret("acl.rt.set_device", ret)

        ret = acl.rt.set_device(self.device_id)
        check_ret("acl.rt.set_device", ret)

        self.context, ret = acl.rt.create_context(self.device_id)
        check_ret("acl.rt.create_context", ret)

        self.stream, ret = acl.rt.create_stream()
        check_ret("acl.rt.create_stream", ret)

        self.run_mode, ret = acl.rt.get_run_mode()
        check_ret("acl.rt.get_run_mode", ret)

        print("Init resource stage success")

    def init(self):

        self._init_resource()
        self._dvpp = Dvpp(self.stream, self.run_mode)

        ret = self._dvpp.init_resource()
        if ret != SUCCESS:
            print("Init dvpp failed")
            return FAILED

        self._model = Model(self.run_mode, self._model_path)
        ret = self._model.init_resource()
        if ret != SUCCESS:
            print("Init model failed")
            return FAILED

        return SUCCESS

    def pre_process(self, image):
        yuv_image = self._dvpp.jpegd(image)
        print("decode jpeg end")
        resized_image = self._dvpp.resize(yuv_image, self._model_width,
                                          self._model_height)
        print("resize yuv end")
        return resized_image

    def inference(self, resized_image):
        return self._model.execute(resized_image.data(), resized_image.size)

    def post_process(self, infer_output, image_file):
        print("post process")
        data = infer_output[0]
        vals = data.flatten()
        top_k = vals.argsort()[-1:-6:-1]
        print("images:{}".format(image_file))
        print("======== top5 inference results: =============")
        for n in top_k:
            object_class = get_image_net_class(n)
            print("label:%d  confidence: %f, class: %s" %
                  (n, vals[n], object_class))
        object_class = get_image_net_class(top_k[0])

        return object_class
Exemplo n.º 10
0
class Sample(object):
    """
    样例入口
    """
    def __init__(self,
                 device_id,
                 model_path,
                 model_input_width,
                 model_input_height):
        self.device_id = device_id      # int
        self.model_path = model_path    # string
        self.model_id = None            # pointer
        self.context = None             # pointer

        self.input_data = None
        self.output_data = None
        self.model_desc = None          # pointer when using
        self.load_input_dataset = None
        self.load_output_dataset = None
        self.init_resource()

        self._model_input_width = model_input_width
        self._model_input_height = model_input_height

        self.model_process = Model(self.context,
                                   self.stream,
                                   self.model_path)

        self.dvpp_process = Dvpp(self.stream,
                                 model_input_width,
                                 model_input_height)

        self.sing_op = SingleOp(self.stream)

    def release_resource(self):
        if self.model_process:
            del self.model_process

        if self.dvpp_process:
            del self.dvpp_process

        if self.sing_op:
            del self.sing_op

        if self.stream:
            acl.rt.destroy_stream(self.stream)

        if self.context:
            acl.rt.destroy_context(self.context)
        acl.rt.reset_device(self.device_id)
        acl.finalize()
        print("[Sample] class Samle release source success")

    def init_resource(self):
        print("[Sample] init resource stage:")
        acl.init()
        ret = acl.rt.set_device(self.device_id)
        check_ret("acl.rt.set_device", ret)

        self.context, ret = acl.rt.create_context(self.device_id)
        check_ret("acl.rt.create_context", ret)

        self.stream, ret = acl.rt.create_stream()
        check_ret("acl.rt.create_stream", ret)
        print("[Sample] init resource stage success")

    def _transfer_to_device(self, img_path, dtype=np.uint8):
        img = np.fromfile(img_path, dtype=dtype)
        if "bytes_to_ptr" in dir(acl.util):
            bytes_data = img.tobytes()
            img_ptr = acl.util.bytes_to_ptr(bytes_data)
        else:
            img_ptr = acl.util.numpy_to_ptr(img)
        img_buffer_size = img.itemsize * img.size
        img_device, ret = acl.media.dvpp_malloc(img_buffer_size)
        check_ret("acl.media.dvpp_malloc", ret)
        ret = acl.rt.memcpy(img_device,
                            img_buffer_size,
                            img_ptr,
                            img_buffer_size,
                            ACL_MEMCPY_HOST_TO_DEVICE)
        check_ret("acl.rt.memcpy", ret)

        return img_device, img_buffer_size

    def forward(self, img_dict):
        img_path, _ = img_dict["path"], img_dict["dtype"]
        # copy images to device
        with Image.open(img_path) as image_file:
            width, height = image_file.size
            print("[Sample] width:{} height:{}".format(width, height))
            print("[Sample] image:{}".format(img_path))
        img_device, img_buffer_size = \
            self._transfer_to_device(img_path, img_dict["dtype"])

        # decode and resize
        dvpp_output_buffer, dvpp_output_size = \
            self.dvpp_process.run(img_device,
                                  img_buffer_size,
                                  width,
                                  height)
        self.model_process.run(
            dvpp_output_buffer,
            dvpp_output_size)
        self.sing_op.run(self.model_process.get_result())
        if img_device:
            acl.media.dvpp_free(img_device)
Exemplo n.º 11
0
class Cartoonization(object):
    def __init__(self, model_path, model_width, model_height):
        self.device_id = 0
        self.context = None
        self.stream = None
        self._model_path = model_path
        self._model_width = model_width
        self._model_height = model_height
        self._dvpp = None

    def __del__(self):
        if self._model:
            del self._model
        if self._dvpp:
            del self._dvpp
        if self.stream:
            acl.rt.destroy_stream(self.stream)
        if self.context:
            acl.rt.destroy_context(self.context)
        acl.rt.reset_device(self.device_id)
        acl.finalize()
        print("[Sample] class Samle release source success")

    def _init_resource(self):
        print("[Sample] init resource stage:")
        ret = acl.init()
        check_ret("acl.rt.set_device", ret)

        ret = acl.rt.set_device(self.device_id)
        check_ret("acl.rt.set_device", ret)

        self.context, ret = acl.rt.create_context(self.device_id)
        check_ret("acl.rt.create_context", ret)

        self.stream, ret = acl.rt.create_stream()
        check_ret("acl.rt.create_stream", ret)

        self.run_mode, ret = acl.rt.get_run_mode()
        check_ret("acl.rt.get_run_mode", ret)

        print("[Sample] Init resource stage success")

    def init(self):
        # init acl resource
        self._init_resource() 
        self._dvpp = Dvpp(self.stream, self.run_mode)

        # init dvpp
        ret = self._dvpp.init_resource()
        if ret != SUCCESS:
            print("Init dvpp failed")
            return FAILED
        
        # load model
        self._model = Model(self.run_mode, self._model_path)
        ret = self._model.init_resource()
        if ret != SUCCESS:
            print("Init model failed")
            return FAILED
        return SUCCESS

    def pre_process(self, image):
        yuv_image = self._dvpp.jpegd(image)
        crop_and_paste_image = \
            self._dvpp.crop_and_paste(yuv_image, image.width, image.height, self._model_width, self._model_height)
        print("[Sample] crop_and_paste yuv end")
        return crop_and_paste_image

    def inference(self, resized_image):
        return self._model.execute(resized_image.data(), resized_image.size)

    def post_process(self, infer_output, image_file, origin_image):
        print("[Sample] post process")
        data = ((np.squeeze(infer_output[0]) + 1) * 127.5)
        img = cv2.cvtColor(data, cv2.COLOR_RGB2BGR)
        img = cv2.resize(img, (origin_image.width, origin_image.height))
        output_path = os.path.join("../outputs", os.path.basename(image_file))
        cv2.imwrite(output_path, img)
Exemplo n.º 12
0
class Sample(object):
    def __init__(self, device_id, model_path, vdec_out_path, model_input_width,
                 model_input_height):
        self.device_id = device_id  # int
        self.model_path = model_path  # string
        self.context = None  # pointer
        self.stream = None
        self.model_input_width = model_input_width
        self.model_input_height = model_input_height,
        self.init_resource()
        self.model_process = Model(self.context, self.stream, model_path)
        self.vdec_process = Vdec(self.context, self.stream, vdec_out_path)
        self.dvpp_process = Dvpp(self.stream, model_input_width,
                                 model_input_height)
        self.model_input_width = model_input_width
        self.model_input_height = model_input_height
        self.vdec_out_path = vdec_out_path

    def init_resource(self):
        print("init resource stage:")
        acl.init()
        ret = acl.rt.set_device(self.device_id)
        check_ret("acl.rt.set_device", ret)

        self.context, ret = acl.rt.create_context(self.device_id)
        check_ret("acl.rt.create_context", ret)

        self.stream, ret = acl.rt.create_stream()
        check_ret("acl.rt.create_stream", ret)
        print("init resource stage success")

    def release_resource(self):
        print('[Sample] release source stage:')
        if self.dvpp_process:
            del self.dvpp_process

        if self.model_process:
            del self.model_process

        if self.vdec_process:
            del self.vdec_process

        if self.stream:
            ret = acl.rt.destroy_stream(self.stream)
            check_ret("acl.rt.destroy_stream", ret)

        if self.context:
            ret = acl.rt.destroy_context(self.context)
            check_ret("acl.rt.destroy_context", ret)

        ret = acl.rt.reset_device(self.device_id)
        check_ret("acl.rt.reset_device", ret)
        ret = acl.finalize()
        check_ret("acl.finalize", ret)
        print('[Sample] release source stage success')

    def _transfer_to_device(self, img):
        img_device = img["buffer"]
        img_buffer_size = img["size"]
        '''
        if the buffer is not in device, need to copy to device, but here, the data is from vdec, no need to copy.
        '''
        return img_device, img_buffer_size

    def forward(self, temp):
        _, input_width, input_height, _ = temp

        # vdec process,note:the input is h264 file,vdec output datasize need to be computed by strided width and height by 16*2
        self.vdec_process.run(temp)

        images_buffer = self.vdec_process.get_image_buffer()
        if images_buffer:
            for img_buffer in images_buffer:
                img_device, img_buffer_size = \
                    self._transfer_to_device(img_buffer)

                print("vdec output, img_buffer_size = ", img_buffer_size)
                # vpc process, parameters:vdec output buffer and size, original picture width and height.
                dvpp_output_buffer, dvpp_output_size = \
                    self.dvpp_process.run(img_device,
                                          img_buffer_size,
                                          input_width,
                                          input_height)

                ret = acl.media.dvpp_free(img_device)
                check_ret("acl.media.dvpp_free", ret)

                self.model_process.run(dvpp_output_buffer, dvpp_output_size)
Exemplo n.º 13
0
class Yolov3(object):
    def __init__(self, acl_resource, model_width, model_height):
        self._acl_resource = acl_resource
        self._model_width = model_width
        self._model_height = model_height
        #使用dvpp处理图像,当使用opencv或者PIL时则不需要创建dvpp实例
        self._dvpp = Dvpp(acl_resource)
        #创建yolov3网络的图像信息输入数据
        self._image_info = np.array([model_width, model_height,
                                     model_width, model_height],
                                     dtype=np.float32)

    def __del__(self):
        if self._dvpp:
            del self._dvpp
        print("Release yolov3 resource finished")


    def pre_process(self, image):
        #使用dvpp将图像缩放到模型要求大小
        resized_image = self._dvpp.resize(image, self._model_width,
                                          self._model_height)
        #输出缩放后的图像和图像信息作为推理输入数据
        return [resized_image, self._image_info]

    def post_process(self, infer_output, origin_img):
        #解析推理输出数据
        detection_result_list = self._analyze_inference_output(infer_output, 
                                                               origin_img)
        #将yuv图像转换为jpeg图像
        jpeg_image = self._dvpp.jpege(origin_img)
        return jpeg_image, detection_result_list

    def _analyze_inference_output(self, infer_output, origin_img):
        #yolov3网络有两个输出,第二个(下标1)输出为框的个数
        box_num = int(infer_output[1][0, 0])
        #第一个(下标0)输出为框信息
        box_info = infer_output[0]
        #输出的框信息是在mode_width*model_height大小的图片上的坐标
        #需要转换到原始图片上的坐标
        scalex = origin_img.width / self._model_width
        scaley = origin_img.height / self._model_height
        detection_result_list = []
        for i in range(box_num):
            #检测到的物体类别编号
            id = int(box_info[0, LABEL * box_num + i])
            if id >= len(labels):
                print("class id %d out of range" % (id))
                continue
            detection_item = presenter_datatype.ObjectDetectionResult()
            detection_item.object_class = id
            #检测到的物体置信度
            detection_item.confidence = box_info[0, SCORE * box_num + i]
            #物体位置框坐标
            detection_item.box.lt.x = int(box_info[0, TOP_LEFT_X * box_num + i] * scalex)
            detection_item.box.lt.y = int(box_info[0, TOP_LEFT_Y * box_num + i] * scaley)
            detection_item.box.rb.x = int(box_info[0, BOTTOM_RIGHT_X * box_num + i] * scalex)
            detection_item.box.rb.y = int(box_info[0, BOTTOM_RIGHT_Y * box_num + i] * scaley)
            #将置信度和类别名称组织为字符串
            if labels == []:
                detection_item.result_text = str(detection_item.object_class) + " " + str(
                    round(detection_item.confidence * 100, 2)) + "%"
            else:
                detection_item.result_text = str(labels[detection_item.object_class]) + " " + str(
                    round(detection_item.confidence * 100, 2)) + "%"
            detection_result_list.append(detection_item)
        return detection_result_list
Exemplo n.º 14
0
class Classify(object):
    def __init__(self, acl_resource, model_path, model_width, model_height):
        self.total_buffer = None
        self._model_path = model_path
        self._model_width = model_width
        self._model_height = model_height

        self._model = Model(model_path)
        self._dvpp = Dvpp(acl_resource)
        print("The App arg is __init__")

    def __del__(self):
        if self.total_buffer:
            acl.rt.free(self.total_buffer)  
        if self._dvpp:
            del self._dvpp
        print("[Sample] class Samle release source success")

    def pre_process(self, image):
        yuv_image = self._dvpp.jpegd(image)
        print("decode jpeg end")
        resized_image = self._dvpp.resize(yuv_image, 
                        self._model_width, self._model_height)
        print("resize yuv end")
        return resized_image
    
    def batch_process(self, resized_image_list, batch):
        resized_img_data_list = []
        resized_img_size = resized_image_list[0].size
        total_size = batch * resized_img_size
        stride = 0
        for resized_image in resized_image_list:
            resized_img_data_list.append(resized_image.data())
        self.total_buffer, ret = acl.rt.malloc(total_size, ACL_MEM_MALLOC_HUGE_FIRST)
        check_ret("acl.rt.malloc", ret)    
        for i in range(len(resized_image_list)):
            ret = acl.rt.memcpy(self.total_buffer + stride, resized_img_size,\
                        resized_img_data_list[i], resized_img_size,\
                        ACL_MEMCPY_DEVICE_TO_DEVICE)
            check_ret("acl.rt.memcpy", ret)
            stride += resized_img_size
        return total_size
    
    def inference(self, resized_image_list, batch):
        total_size = self.batch_process(resized_image_list, batch)
        batch_buffer = {'data': self.total_buffer, 'size':total_size}
        return self._model.execute([batch_buffer, ])
    
    def post_process(self, infer_output, batch_image_files, number_of_images):
        print("post process") 
        datas = infer_output[0]
        
        for number in range(number_of_images):
            data = datas[number]
            vals = data.flatten()
            top_k = vals.argsort()[-1:-6:-1]
            print("images:{}".format(batch_image_files[number]))
            print("======== top5 inference results: =============")
            for n in top_k:
                object_class = get_image_net_class(n)
                print("label:%d  confidence: %f, class: %s" % (n, vals[n], object_class))
            
            #Use Pillow to write the categories with the highest confidence on the image and save them locally
            if len(top_k):
                object_class = get_image_net_class(top_k[0])
                output_path = os.path.join("../outputs", os.path.basename(batch_image_files[number]))
                origin_img = Image.open(batch_image_files[number])
                draw = ImageDraw.Draw(origin_img)
                font = ImageFont.truetype("SourceHanSansCN-Normal.ttf", size=30)
                draw.text((10, 50), object_class, font=font, fill=255)
                origin_img.save(output_path)
Exemplo n.º 15
0
 def __init__(self, acl_resource, model_width, model_height):
     self._acl_resource = acl_resource
     self._model_width = model_width
     self._model_height = model_height
     #使用dvpp处理图像,当使用opencv或者PIL时则不需要创建dvpp实例
     self._dvpp = Dvpp(acl_resource)
Exemplo n.º 16
0
class VggSsd(object):
    def __init__(self, acl_resource, model_width, model_height):
        self._acl_resource = acl_resource
        self._model_width = model_width
        self._model_height = model_height
        #使用dvpp处理图像,当使用opencv或者PIL时则不需要创建dvpp实例
        self._dvpp = Dvpp(acl_resource)

    def __del__(self):
        print("Release yolov3 resource finished")

    def pre_process(self, image):
        #使用dvpp将图像缩放到模型要求大小
        resized_image = self._dvpp.resize(image, self._model_width,
                                          self._model_height)
        if resized_image == None:
            print("Resize image failed")
            return None
        #输出缩放后的图像和图像信息作为推理输入数据
        return [
            resized_image,
        ]

        # img_h = image.size[1]
        # img_w = image.size[0]
        # net_h = MODEL_HEIGHT
        # net_w = MODEL_WIDTH

        # scale = min(float(net_w) / float(img_w), float(net_h) / float(img_h))
        # new_w = int(img_w * scale)
        # new_h = int(img_h * scale)

        # shift_x = (net_w - new_w) // 2
        # shift_y = (net_h - new_h) // 2
        # shift_x_ratio = (net_w - new_w) / 2.0 / net_w
        # shift_y_ratio = (net_h - new_h) / 2.0 / net_h

        # image_ = image.resize( (new_w, new_h))
        # new_image = np.zeros((net_h, net_w, 3), np.uint8)
        # new_image[shift_y: new_h + shift_y, shift_x: new_w + shift_x, :] = np.array(image_)
        # new_image = new_image.astype(np.float32)
        # new_image = new_image / 255

        # return new_image

    def post_process(self, infer_output, origin_img):
        #解析推理输出数据
        detection_result_list = self._analyze_inference_output(
            infer_output, origin_img)
        #将yuv图像转换为jpeg图像
        jpeg_image = self._dvpp.jpege(origin_img)

        return jpeg_image, detection_result_list

    def overlap(self, x1, x2, x3, x4):
        left = max(x1, x3)
        right = min(x2, x4)
        return right - left

    def cal_iou(self, box, truth):
        w = self.overlap(box[0], box[2], truth[0], truth[2])
        h = self.overlap(box[1], box[3], truth[1], truth[3])
        if w <= 0 or h <= 0:
            return 0
        inter_area = w * h
        union_area = (box[2] - box[0]) * (box[3] - box[1]) + (
            truth[2] - truth[0]) * (truth[3] - truth[1]) - inter_area
        return inter_area * 1.0 / union_area

    def apply_nms(self, all_boxes, thres):
        res = []

        for cls in range(class_num):
            cls_bboxes = all_boxes[cls]
            sorted_boxes = sorted(cls_bboxes, key=lambda d: d[5])[::-1]

            p = dict()
            for i in range(len(sorted_boxes)):
                if i in p:
                    continue

                truth = sorted_boxes[i]
                for j in range(i + 1, len(sorted_boxes)):
                    if j in p:
                        continue
                    box = sorted_boxes[j]
                    iou = self.cal_iou(box, truth)
                    if iou >= thres:
                        p[j] = 1

            for i in range(len(sorted_boxes)):
                if i not in p:
                    res.append(sorted_boxes[i])
        return res

    def decode_bbox(self, conv_output, anchors, img_w, img_h, x_scale, y_scale,
                    shift_x_ratio, shift_y_ratio):
        def _sigmoid(x):
            s = 1 / (1 + np.exp(-x))
            return s

        h, w, _ = conv_output.shape

        pred = conv_output.reshape((h * w, 3, 5 + class_num))

        pred[..., 4:] = _sigmoid(pred[..., 4:])
        pred[..., 0] = (_sigmoid(pred[..., 0]) + np.tile(range(w),
                                                         (3, h)).transpose(
                                                             (1, 0))) / w
        pred[...,
             1] = (_sigmoid(pred[..., 1]) + np.tile(np.repeat(range(h), w),
                                                    (3, 1)).transpose(
                                                        (1, 0))) / h
        pred[..., 2] = np.exp(pred[..., 2]) * anchors[:, 0:1].transpose(
            (1, 0)) / w
        pred[..., 3] = np.exp(pred[..., 3]) * anchors[:, 1:2].transpose(
            (1, 0)) / h

        bbox = np.zeros((h * w, 3, 4))
        bbox[..., 0] = np.maximum(
            (pred[..., 0] - pred[..., 2] / 2.0 - shift_x_ratio) * x_scale *
            img_w, 0)  # x_min
        bbox[..., 1] = np.maximum(
            (pred[..., 1] - pred[..., 3] / 2.0 - shift_y_ratio) * y_scale *
            img_h, 0)  # y_min
        bbox[..., 2] = np.minimum(
            (pred[..., 0] + pred[..., 2] / 2.0 - shift_x_ratio) * x_scale *
            img_w, img_w)  # x_max
        bbox[..., 3] = np.minimum(
            (pred[..., 1] + pred[..., 3] / 2.0 - shift_y_ratio) * y_scale *
            img_h, img_h)  # y_max

        pred[..., :4] = bbox
        pred = pred.reshape((-1, 5 + class_num))
        pred[:, 4] = pred[:, 4] * pred[:, 5:].max(1)
        pred = pred[pred[:, 4] >= conf_threshold]
        pred[:, 5] = np.argmax(pred[:, 5:], axis=-1)

        all_boxes = [[] for ix in range(class_num)]
        for ix in range(pred.shape[0]):
            box = [int(pred[ix, iy]) for iy in range(4)]
            box.append(int(pred[ix, 5]))
            box.append(pred[ix, 4])
            all_boxes[box[4] - 1].append(box)

        return all_boxes

    def convert_labels(self, label_list):
        if isinstance(label_list, np.ndarray):
            label_list = label_list.tolist()
            label_names = [labels[int(index)] for index in label_list]
        return label_names

    def _analyze_inference_output(self, infer_output, origin_img):

        result_return = dict()
        #img_h = origin_img.size[1]
        #img_w = origin_img.size[0]
        img_h = origin_img.height
        img_w = origin_img.width
        scale = min(
            float(MODEL_WIDTH) / float(img_w),
            float(MODEL_HEIGHT) / float(img_h))
        new_w = int(img_w * scale)
        new_h = int(img_h * scale)
        shift_x_ratio = (MODEL_WIDTH - new_w) / 2.0 / MODEL_WIDTH
        shift_y_ratio = (MODEL_HEIGHT - new_h) / 2.0 / MODEL_HEIGHT
        class_num = len(labels)
        num_channel = 3 * (class_num + 5)
        x_scale = MODEL_WIDTH / float(new_w)
        y_scale = MODEL_HEIGHT / float(new_h)
        all_boxes = [[] for ix in range(class_num)]
        for ix in range(3):
            pred = infer_output[2 - ix].reshape(
                (MODEL_HEIGHT // stride_list[ix],
                 MODEL_WIDTH // stride_list[ix], num_channel))
            anchors = anchor_list[ix]
            boxes = self.decode_bbox(pred, anchors, img_w, img_h, x_scale,
                                     y_scale, shift_x_ratio, shift_y_ratio)
            all_boxes = [all_boxes[iy] + boxes[iy] for iy in range(class_num)]

        res = self.apply_nms(all_boxes, iou_threshold)
        if not res:
            result_return['detection_classes'] = []
            result_return['detection_boxes'] = []
            result_return['detection_scores'] = []
            # return result_return
        else:
            new_res = np.array(res)
            picked_boxes = new_res[:, 0:4]
            picked_boxes = picked_boxes[:, [1, 0, 3, 2]]
            picked_classes = self.convert_labels(new_res[:, 4])
            picked_score = new_res[:, 5]
            result_return['detection_classes'] = picked_classes
            result_return['detection_boxes'] = picked_boxes.tolist()
            result_return['detection_scores'] = picked_score.tolist()
            # return result_return

        detection_result_list = []
        for i in range(len(result_return['detection_classes'])):
            box = result_return['detection_boxes'][i]
            class_name = result_return['detection_classes'][i]
            confidence = result_return['detection_scores'][i]
            detection_item = presenter_datatype.ObjectDetectionResult()
            detection_item.confidence = confidence
            detection_item.box.lt.x = int(box[1])
            detection_item.box.lt.y = int(box[0])
            detection_item.box.rb.x = int(box[3])
            detection_item.box.rb.y = int(box[2])
            detection_item.result_text = str(class_name)
            detection_result_list.append(detection_item)
        return detection_result_list