Exemplo n.º 1
0
def fbeamformers():
    bb = BeamformerBase(freq_data=f, steer=st, r_diag=True, cached=False)
    be = BeamformerEig(freq_data=f, steer=st, r_diag=True, n=54, cached=False)

    #frequency beamformers to test
    bbase = BeamformerBase(freq_data=f, steer=st, r_diag=True, cached=False)
    bc = BeamformerCapon(freq_data=f, steer=st, cached=False)
    beig = BeamformerEig(freq_data=f,
                         steer=st,
                         r_diag=True,
                         n=54,
                         cached=False)
    bm = BeamformerMusic(freq_data=f, steer=st, n=6, cached=False)
    bd = BeamformerDamas(beamformer=bb, n_iter=10, cached=False)
    bdp = BeamformerDamasPlus(beamformer=bb, n_iter=100, cached=False)
    bo = BeamformerOrth(beamformer=be,
                        eva_list=list(range(38, 54)),
                        cached=False)
    bs = BeamformerCleansc(freq_data=f, steer=st, r_diag=True, cached=False)
    bcmf = BeamformerCMF(freq_data=f,
                         steer=st,
                         method='LassoLarsBIC',
                         cached=False)
    bl = BeamformerClean(beamformer=bb, n_iter=10, cached=False)
    bf = BeamformerFunctional(freq_data=f,
                              steer=st,
                              r_diag=False,
                              gamma=3,
                              cached=False)
    bgib = BeamformerGIB(freq_data=f,
                         steer=st,
                         method='LassoLars',
                         n=2,
                         cached=False)
    return (bbase, bc, beig, bm, bl, bo, bs, bd, bcmf, bf, bdp, bgib)
Exemplo n.º 2
0
    window='Hanning',
    overlap='50%',
    block_size=128,  #FFT-parameters
    ind_low=8,
    ind_high=16)  #to save computational effort, only
# frequencies with indices 8..15 are used

#===============================================================================
# different beamformers in frequency domain
#===============================================================================
bb = BeamformerBase(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04)
bc = BeamformerCapon(freq_data=f, grid=g, mpos=m, c=346.04, cached=False)
be = BeamformerEig(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04, n=54)
bm = BeamformerMusic(freq_data=f, grid=g, mpos=m, c=346.04, n=6)
bd = BeamformerDamas(beamformer=bb, n_iter=100)
bo = BeamformerOrth(beamformer=be, eva_list=list(range(38, 54)))
bs = BeamformerCleansc(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04)
bcmf = BeamformerCMF(freq_data=f, grid=g, mpos=m, c=346.04, \
    method='LassoLarsBIC')
bl = BeamformerClean(beamformer=bb, n_iter=100)
bf = BeamformerFunctional(freq_data=f, grid=g, mpos=m, r_diag=False, c=346.04, \
    gamma=4)

#===============================================================================
# plot result maps for different beamformers in frequency domain
#===============================================================================
figure(1, (10, 6))
i1 = 1  #no of subplot
for b in (bb, bc, be, bm, bl, bo, bs, bd, bcmf, bf):
    subplot(3, 4, i1)
    i1 += 1
Exemplo n.º 3
0
st = SteeringVector(grid=g, mics=m, env=env)

f = PowerSpectra(
    time_data=t1,
    window='Hanning',
    overlap='50%',
    block_size=128,  #FFT-parameters
    cached=False)  #cached = False

bb = BeamformerBase(freq_data=f, steer=st, r_diag=True, cached=False)
bc = BeamformerCapon(freq_data=f, steer=st, cached=False)
be = BeamformerEig(freq_data=f, steer=st, r_diag=True, n=54, cached=False)
bm = BeamformerMusic(freq_data=f, steer=st, n=6, cached=False)
bd = BeamformerDamas(beamformer=bb, n_iter=100, cached=False)
bdp = BeamformerDamasPlus(beamformer=bb, n_iter=100, cached=False)
bo = BeamformerOrth(beamformer=be, eva_list=list(range(38, 54)), cached=False)
bs = BeamformerCleansc(freq_data=f, steer=st, r_diag=True, cached=False)
bcmf = BeamformerCMF(freq_data=f,
                     steer=st,
                     method='LassoLarsBIC',
                     cached=False)
bl = BeamformerClean(beamformer=bb, n_iter=100, cached=False)
bf = BeamformerFunctional(freq_data=f,
                          steer=st,
                          r_diag=False,
                          gamma=4,
                          cached=False)
bgib = BeamformerGIB(freq_data=f,
                     steer=st,
                     method='LassoLars',
                     n=10,
bcsc4Full = BeamformerCleansc(freq_data=f,
                              grid=g,
                              mpos=m,
                              r_diag=False,
                              c=346.04,
                              steer='true location')
Lbcsc1Rem = L_p(bcsc1Rem.synthetic(4000, 1))
Lbcsc2Rem = L_p(bcsc2Rem.synthetic(4000, 1))
Lbcsc3Rem = L_p(bcsc3Rem.synthetic(4000, 1))
Lbcsc4Rem = L_p(bcsc4Rem.synthetic(4000, 1))
Lbcsc1Full = L_p(bcsc1Full.synthetic(4000, 1))
Lbcsc2Full = L_p(bcsc2Full.synthetic(4000, 1))
Lbcsc3Full = L_p(bcsc3Full.synthetic(4000, 1))
Lbcsc4Full = L_p(bcsc4Full.synthetic(4000, 1))

bort1Rem = BeamformerOrth(beamformer=be1Rem, eva_list=list(range(4, 8)))
bort2Rem = BeamformerOrth(beamformer=be2Rem, eva_list=list(range(4, 8)))
bort3Rem = BeamformerOrth(beamformer=be3Rem, eva_list=list(range(4, 8)))
bort4Rem = BeamformerOrth(beamformer=be4Rem, eva_list=list(range(4, 8)))
bort1Full = BeamformerOrth(beamformer=be1Full, eva_list=list(range(4, 8)))
bort2Full = BeamformerOrth(beamformer=be2Full, eva_list=list(range(4, 8)))
bort3Full = BeamformerOrth(beamformer=be3Full, eva_list=list(range(4, 8)))
bort4Full = BeamformerOrth(beamformer=be4Full, eva_list=list(range(4, 8)))
Lbort1Rem = L_p(bort1Rem.synthetic(4000, 1))
Lbort2Rem = L_p(bort2Rem.synthetic(4000, 1))
Lbort3Rem = L_p(bort3Rem.synthetic(4000, 1))
Lbort4Rem = L_p(bort4Rem.synthetic(4000, 1))
Lbort1Full = L_p(bort1Full.synthetic(4000, 1))
Lbort2Full = L_p(bort2Full.synthetic(4000, 1))
Lbort3Full = L_p(bort3Full.synthetic(4000, 1))
Lbort4Full = L_p(bort4Full.synthetic(4000, 1))
bcsc3Rem = BeamformerCleansc(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04, steer='true level')
bcsc4Rem = BeamformerCleansc(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04, steer='true location')
bcsc1Full = BeamformerCleansc(freq_data=f, grid=g, mpos=m, r_diag=False, c=346.04, steer='classic')
bcsc2Full = BeamformerCleansc(freq_data=f, grid=g, mpos=m, r_diag=False, c=346.04, steer='inverse')
bcsc3Full = BeamformerCleansc(freq_data=f, grid=g, mpos=m, r_diag=False, c=346.04, steer='true level')
bcsc4Full = BeamformerCleansc(freq_data=f, grid=g, mpos=m, r_diag=False, c=346.04, steer='true location')
Lbcsc1Rem = L_p(bcsc1Rem.synthetic(4000,1))
Lbcsc2Rem = L_p(bcsc2Rem.synthetic(4000,1))
Lbcsc3Rem = L_p(bcsc3Rem.synthetic(4000,1))
Lbcsc4Rem = L_p(bcsc4Rem.synthetic(4000,1))
Lbcsc1Full = L_p(bcsc1Full.synthetic(4000,1))
Lbcsc2Full = L_p(bcsc2Full.synthetic(4000,1))
Lbcsc3Full = L_p(bcsc3Full.synthetic(4000,1))
Lbcsc4Full = L_p(bcsc4Full.synthetic(4000,1))

bort1Rem = BeamformerOrth(beamformer=be1Rem, eva_list=list(range(4,8)))
bort2Rem = BeamformerOrth(beamformer=be2Rem, eva_list=list(range(4,8)))
bort3Rem = BeamformerOrth(beamformer=be3Rem, eva_list=list(range(4,8)))
bort4Rem = BeamformerOrth(beamformer=be4Rem, eva_list=list(range(4,8)))
bort1Full = BeamformerOrth(beamformer=be1Full, eva_list=list(range(4,8)))
bort2Full = BeamformerOrth(beamformer=be2Full, eva_list=list(range(4,8)))
bort3Full = BeamformerOrth(beamformer=be3Full, eva_list=list(range(4,8)))
bort4Full = BeamformerOrth(beamformer=be4Full, eva_list=list(range(4,8)))
Lbort1Rem = L_p(bort1Rem.synthetic(4000,1))
Lbort2Rem = L_p(bort2Rem.synthetic(4000,1))
Lbort3Rem = L_p(bort3Rem.synthetic(4000,1))
Lbort4Rem = L_p(bort4Rem.synthetic(4000,1))
Lbort1Full = L_p(bort1Full.synthetic(4000,1))
Lbort2Full = L_p(bort2Full.synthetic(4000,1))
Lbort3Full = L_p(bort3Full.synthetic(4000,1))
Lbort4Full = L_p(bort4Full.synthetic(4000,1))
Exemplo n.º 6
0
 #    "SlotJet.plane item assignment": (SlotJet(), "obj.plane[0] = 1."),
 "SlotJet.plane array assignment": (SlotJet(),
                                    "obj.plane = array((1., 0., 0.))"),
 #    "OpenJet.origin item assignment": (OpenJet(), "obj.origin[0] = 1."),
 "OpenJet.origin array assignment": (OpenJet(),
                                     "obj.origin = array((1., 0., 0.))"),
 #    "RotatingFlow.origin item assignment": (RotatingFlow(), "obj.origin[0] = 1."),
 "RotatingFlow.origin array assignment":
 (RotatingFlow(), "obj.origin = array((1., 0., 0.))"),
 #fbeamform.py
 #    "SteeringVector.ref item assignment": (SteeringVector(), "obj.ref[0] = 1."),
 "SteeringVector.ref array assignment": (SteeringVector(),
                                         "obj.ref = array((1., 1., 1.))"),
 #    "BeamformerOrth.eva_list item assignment": (BeamformerOrth(eva_list=array((0, 1))), "obj.eva_list[0] = 2"),
 "BeamformerOrth.eva_list array assignment":
 (BeamformerOrth(eva_list=array((0, 1))), "obj.eva_list = array((2))"),
 #grids.py
 "MergeGrid.grids item assignment": (MergeGrid(grids=[RectGrid()]),
                                     "obj.grids[0] = RectGrid()"),
 "MergeGrid.grids list assignment": (MergeGrid(),
                                     "obj.grids = [RectGrid()]"),
 # signals.py
 #    "FiltWNoiseGenerator.ar item assignment": (FiltWNoiseGenerator(ar=[1.,2.,3.]), "obj.ar[0] = 0."),
 "FiltWNoiseGenerator.ar array assignment":
 (FiltWNoiseGenerator(ar=[1., 2., 3.]), "obj.ar = array((0., 0., 0.))"),
 #    "FiltWNoiseGenerator.ma item assignment": (FiltWNoiseGenerator(ma=[1.,2.,3.]), "obj.ma[0] = 0."),
 "FiltWNoiseGenerator.mar array assignment":
 (FiltWNoiseGenerator(ma=[1., 2., 3.]), "obj.ma = array((0., 0., 0.))"),
 #sources.py
 "MaskedTimeSamples.invalid_channels item assignment":
 (MaskedTimeSamples(invalid_channels=[1]), "obj.invalid_channels[0] = 0"),
Exemplo n.º 7
0
# eigenvalues and eigenvectors, if only the matrix is needed then class
# PowerSpectra can be used instead
#===============================================================================
f = EigSpectra(
    time_data=t1,
    window='Hanning',
    overlap='50%',
    block_size=128,  #FFT-parameters
    ind_low=4,
    ind_high=15)  #to save computational effort, only
# frequencies with index 1-30 are used

#===============================================================================
# different beamformers in frequency domain
#===============================================================================
# first, some simple delay and sum beamformers,
# but with different steering vector types
#===============================================================================
bb0 = BeamformerBase(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04, \
    steer='true level', cached = False) # this is the default
bs0 = BeamformerCleansc(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04, \
    steer='true level', cached=False, n=200)
be0 = BeamformerEig(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04, n=-1, \
    steer='true level', cached=False)
bo0 = BeamformerOrth(beamformer=be0, eva_list=range(38, 54), cached=False)

from time import time
ti = time()
map = bs0.result[:]
print time() - ti, g.size