Exemplo n.º 1
0
def clean_data():

    data = acquisition()

    # we get rid of rows with no price
    data = data.dropna(subset=["price"])

    # we want to analyse AVE prices so this is the only type of train we keep
    # data["train_type"].value_counts()
    data = data[data["train_type"] == "AVE"]

    # As we want the Turista solo plaza H class is for people with a disability we delte all this rows as we want to analyse ordinary tickets to get a more realistic cost for the avg person
    # data["train_class"].value_counts()
    data = data[data["train_class"] != "TuristaSólo plaza H"]

    # we are going to keep only the promo and flexible tickets, the most common type of fares
    list_values = ["COD.PROMOCIONAL", "Mesa", "Promo +", "Grupos Ida", "4x100"]
    for col in list_values:
        data = data[data["fare"] != col]

    # As we have decided to analyze only trips with origin in Madrid we drop the rest
    data = data[data["origin"] == "MADRID"]

    # data["destination"].value_counts()

    return data
Exemplo n.º 2
0
    pylab.draw()

#Do acquisition
#Get 11ms of acquisition samples for fine frequency estimation
samplesPerCode = int(
    round(settings.samplingFreq /
          (settings.codeFreqBasis / settings.codeLength)))
acqSamples = getSamples.int8(settings.fileName, 11 * samplesPerCode,
                             settings.skipNumberOfBytes)
if settings.skipAcquisition:
    print "\nLoading old acquisition results ...",
    acqResults = pickle.load(open("acqResults.pickle", "rb"))
    print "done"
else:
    print "\nAcquiring satellites ...",
    acqResults = acquisition(acqSamples, settings)
    pickle.dump(acqResults, open("acqResults.pickle", "wb"))
#  print "done"
if settings.plotAcquisition:
    acqFigure = plotAcquisition(acqResults, settings)
    pylab.draw()

#Do tracking
#Find if any satellites were acquired
acqSuccessful = False
#for i in settings.acqSatelliteList:
for i in range(32 - 1, -1, -1):
    if acqResults[i][0] > settings.acqThreshold:
        acqSuccessful = True
    else:  #if satellite wasn't found, pop it off the list
        acqResults.pop(i)
Exemplo n.º 3
0
if settings.plotSignal:
  print "Plotting data", settings.fileName
  probeFigure = probeData(settings)
  pylab.draw()

#Do acquisition
#Get 11ms of acquisition samples for fine frequency estimation
samplesPerCode = int(round(settings.samplingFreq / (settings.codeFreqBasis / settings.codeLength)))
acqSamples = getSamples.int8(settings.fileName,11*samplesPerCode,settings.skipNumberOfBytes)
if settings.skipAcquisition:
  print "\nLoading old acquisition results ...",
  acqResults = pickle.load(open("acqResults.pickle","rb"))
  print "done"
else:
  print "\nAcquiring satellites ...",
  acqResults = acquisition(acqSamples,settings)
  pickle.dump(acqResults,open("acqResults.pickle","wb"))
#  print "done"
if settings.plotAcquisition:
  acqFigure = plotAcquisition(acqResults,settings)
  pylab.draw()

#Do tracking
#Find if any satellites were acquired
acqSuccessful = False
#for i in settings.acqSatelliteList:
for i in range(32-1,-1,-1):
  if acqResults[i][0] > settings.acqThreshold:
    acqSuccessful = True
  else: #if satellite wasn't found, pop it off the list
    acqResults.pop(i)
Exemplo n.º 4
0
threshold = 0.05
if len(sys.argv) > 1:
    threshold = float(sys.argv[1])

firstCfg = Config("First")
secondCfg = Config("Second")

### Display title
print
print "\t\t\t\tProgramme" + Color.BOLD + " MAGELLI" + Color.NORMAL

### ETAPE 1: apprentissage sur un court texte
print
print "-" * 70
print Color.BOLD + "Entrez un texte de votre choix et terminez en tapant deux fois Entrée :" + Color.NORMAL
freq_bs = acquisition(firstCfg)
print Color.CYAN + "Fréquence des BACKSPACE: " + str(freq_bs) + Color.NORMAL
print "-" * 70

### ETAPE 2: écriture d'un deuxième texte (identique ou non)
print Color.BOLD + "Entrez un deuxième texte (identique ou non) et terminez en tapant deux fois Entrée :" + Color.NORMAL
freq_bs = acquisition(secondCfg)
print Color.CYAN + "Fréquence des BACKSPACE: " + str(freq_bs) + Color.NORMAL
print "-" * 70
print

### ETAPE 3: comparaison des deux (sensibilité variable)
inter = firstCfg.intersection(secondCfg)
sum = 0
i = 0
Exemplo n.º 5
0
def postProcessing(*args, **kwargs):
    nargin = len(args)

    ## Initialization =========================================================
    print 'Starting processing...'

    if nargin == 1:
        settings = args[0]
        fileNameStr = settings.fileName
    elif nargin == 2:
        fileNameStr, settings = args
        if ~isinstance(fileNameStr, str):
            raise TypeError('File name must be a string')
    else:
        raise Exception('Incorrect number of arguments')
    try:
        with open(fileNameStr, 'rb') as fid:

            # If success, then process the data
            # Move the starting point of processing. Can be used to start the
            # signal processing at any point in the data record (e.g. good for long
            # records or for signal processing in blocks).
            fid.seek(settings.skipNumberOfBytes, 0)
            ## Acquisition ============================================================
            # Do acquisition if it is not disabled in settings or if the variable
            # acqResults does not exist.
            if not settings.skipAcquisition or 'acqResults' not in globals():
                # Find number of samples per spreading code
                samplesPerCode = long(
                    round(settings.samplingFreq /
                          (settings.codeFreqBasis / settings.codeLength)))

                # frequency estimation
                data = np.fromfile(fid, settings.dataType, 11 * samplesPerCode)

                print '   Acquiring satellites...'
                acqResults = acquisition.acquisition(data, settings)

                plotAcquisition.plotAcquisition(acqResults)
            ## Initialize channels and prepare for the run ============================
            # Start further processing only if a GNSS signal was acquired (the
            # field FREQUENCY will be set to 0 for all not acquired signals)
            if np.any(acqResults.carrFreq):
                channel = preRun.preRun(acqResults, settings)

                preRun.showChannelStatus(channel, settings)
            else:
                # No satellites to track, exit
                print 'No GNSS signals detected, signal processing finished.'
                trackResults = None

            ## Track the signal =======================================================
            startTime = datetime.datetime.now()

            print '   Tracking started at %s' % startTime.strftime('%X')
            try:
                trackResults = np.load('trackingResults_python.npy')
            except IOError:
                trackResults, channel = tracking.tracking(
                    fid, channel, settings)
                np.save('trackingResults_python', trackResults)

            print '   Tracking is over (elapsed time %s s)' % (
                datetime.datetime.now() - startTime).total_seconds()
            # Auto save the acquisition & tracking results to a file to allow
            # running the positioning solution afterwards.
            print '   Saving Acq & Tracking results to file "trackingResults.mat"'
            ## Calculate navigation solutions =========================================
            print '   Calculating navigation solutions...'
            try:
                navSolutions = np.load('navSolutions_python.npy')
            except IOError:
                navSolutions, eph = postNavigation.postNavigation(
                    trackResults, settings)
                np.save('navSolutions_python', navSolutions)

            print '   Processing is complete for this data block'
            # return
            # savemat('trackingResults_from_python',
            #         {'trackResults': trackResults,
            #          'settings': settings,
            #          'acqResults': acqResults,
            #          'channel': channel,
            #          'navSolutions': navSolutions})

            ## Plot all results ===================================================
            print '   Plotting results...'
            # TODO
            # turn off tracking plots for now
            if not settings.plotTracking:
                plotTracking.plotTracking(range(settings.numberOfChannels),
                                          trackResults, settings)
            plotNavigation.plotNavigation(navSolutions, settings)
            print 'Post processing of the signal is over.'
    except IOError as e:
        # Error while opening the data file.
        print 'Unable to read file "%s": %s.' % (settings.fileName, e)
Exemplo n.º 6
0
threshold = 0.05
if len(sys.argv) > 1 :
	threshold = float(sys.argv[1])

firstCfg  = Config("First")
secondCfg = Config("Second")

### Display title
print
print "\t\t\t\tProgramme" + Color.BOLD + " MAGELLI" + Color.NORMAL

### ETAPE 1: apprentissage sur un court texte
print
print "-"*70
print Color.BOLD + "Entrez un texte de votre choix et terminez en tapant deux fois Entrée :" + Color.NORMAL
freq_bs = acquisition(firstCfg)
print Color.CYAN + "Fréquence des BACKSPACE: " + str(freq_bs) + Color.NORMAL
print "-"*70

### ETAPE 2: écriture d'un deuxième texte (identique ou non)
print Color.BOLD + "Entrez un deuxième texte (identique ou non) et terminez en tapant deux fois Entrée :" + Color.NORMAL
freq_bs = acquisition(secondCfg)
print Color.CYAN + "Fréquence des BACKSPACE: " + str(freq_bs) + Color.NORMAL
print "-"*70
print

### ETAPE 3: comparaison des deux (sensibilité variable)
inter = firstCfg.intersection(secondCfg)
sum = 0
i   = 0
Exemplo n.º 7
0
        analysis.male_female_ratio(df)
        analysis.more_even_country(df)
        analysis.profitable_work_field(df)
        analysis.education_ratio(df)
    else:
        print('Not a valid number, try again with a choice from 1 to 6!')


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Prepare yourself for an analysis of the billionaires of 2018:')
    requiredNamed = parser.add_argument_group('required named arguments')
    requiredNamed.add_argument('-a', '--analysis', dest='type_of_analysis', default=None, choices=[1, 2, 3, 4, 5, 6], type=int, help="""1 - To know which country has maximum numbers of billionaires;
    2 - To get the male to female ratio based on the total of dollars;
    3 - To know which country has the greatest share in terms of total money held by its billionaires;
    4 - To get the top 15 most profitable fields of work;
    5 - To get the percentage of billionaires with studies;
    6 - To get all the above""", required=True)
    requiredNamed.add_argument('-e', '--email', dest='want_results', default=None, required=True, choices=['y', 'n'], type=str, help="""y - To receive an email with your results; 
    n - Otherwise""")
    args = parser.parse_args()

    print('Prepare yourself for an analysis of the billionaires of 2018!')

    acquisition('df')
    cleaning('df')
    webscraping('df')
    df = pd.read_csv('df')
    main(args.type_of_analysis)
    converting.extra_analysis()
    converting.add_pdf(args.type_of_analysis)
    sending_email(args.want_results)