Exemplo n.º 1
0
def test_batch_norm_inference():
    num_examples = 1000
    data = saved_data[20]
    assert len(data) == 15
    x = data[0]
    y = data[1]
    soldbeta = data[2]
    soldgamma = data[3]
    xs = data[4]
    solground = data[5:]
    reset_prng()
    mlp = hw1.MLP(784, 10, [64, 32], [activation.Sigmoid(), activation.Sigmoid(), activation.Identity()],
                  weight_init, bias_init, loss.SoftmaxCrossEntropy(), 0.008,
                  momentum=0.0, num_bn_layers=1)

    batch_size = 100
    mlp.train()
    for b in range(0, 1):
        mlp.zero_grads()
        mlp.forward(x[b:b + batch_size])
        mlp.backward(y[b:b + batch_size])
        mlp.step()
        closeness_test(mlp.bn_layers[0].dbeta, soldbeta, "mlp.bn_layers[0].dbeta")
        closeness_test(mlp.bn_layers[0].dgamma, soldgamma, "mlp.bn_layers[0].dgamma")

    for b in range(0, num_examples, batch_size):
        mlp.eval()
        student = mlp.forward(xs[b:b + batch_size])
        ground = solground[b//batch_size]
        closeness_test(student, ground, "mlp.forward(x)")
Exemplo n.º 2
0
 def predict(self, input_data):
     A1 = np.dot(self.input_data, self.W1) + self.B1
     Z1 = activation.Sigmoid(A1)
     A2 = np.dot(Z1, self.W2) + self.B2
     y = activation.Sigmoid(A2)
     predicted_num = np.argmax(y)
     return predicted_num
Exemplo n.º 3
0
def test_batch_norm_train():
    data = saved_data[19]
    assert len(data) == 10
    x = data[0]
    y = data[1]
    soldW = data[2:5]
    soldb = data[5:8]
    soldbeta = data[8]
    soldgamma = data[9]

    reset_prng()

    mlp = hw1.MLP(784, 10, [64, 32], [activation.Sigmoid(), activation.Sigmoid(), activation.Identity()],
                  weight_init, bias_init, loss.SoftmaxCrossEntropy(), 0.008,
                  momentum=0.0, num_bn_layers=1)

    mlp.forward(x)
    mlp.backward(y)

    dW = [x.dW for x in mlp.linear_layers]
    db = [x.db for x in mlp.linear_layers]

    for i, (pred, gt) in enumerate(zip(dW, soldW)):
        closeness_test(pred, gt, "mlp.dW[%d]" % i)

    for i, (pred, gt) in enumerate(zip(db, soldb)):
        closeness_test(pred, gt, "mlp.db[%d]" % i)

    closeness_test(mlp.bn_layers[0].dbeta, soldbeta, "mlp.bn_layers[0].dbeta")
    closeness_test(mlp.bn_layers[0].dgamma, soldgamma, "mlp.bn_layers[0].dgamma")
Exemplo n.º 4
0
def test_momentum():
    data = saved_data[21]
    assert len(data) == 8
    x = data[0]
    y = data[1]
    solW = data[2:5]
    solb = data[5:]
    reset_prng()
    mlp = hw1.MLP(784, 10, [64, 32], [activation.Sigmoid(), activation.Sigmoid(), activation.Identity()], weight_init, bias_init, loss.SoftmaxCrossEntropy(), 0.008,
                  momentum=0.856, num_bn_layers=0)

    num_test_updates = 5
    for u in range(num_test_updates):
        mlp.zero_grads()
        mlp.forward(x)
        mlp.backward(y)
        mlp.step()
    mlp.eval()

    W = [x.W for x in mlp.linear_layers]
    b = [x.b for x in mlp.linear_layers]

    for i, (pred, gt) in enumerate(zip(W, solW)):
        closeness_test(pred, gt, "mlp.linear_layers[%d].W" % i)

    for i, (pred, gt) in enumerate(zip(b, solb)):
        closeness_test(pred, gt, "mlp.linear_layers[%d].b" % i)
Exemplo n.º 5
0
def test_mystery_hidden_backward2():
    data = saved_data[17]
    assert len(data) == 14
    x = data[0]
    y = data[1]
    soldW = data[2:8]
    soldb = data[8:]
    reset_prng()
    mlp = hw1.MLP(784,
                  10, [32, 32, 32, 32, 32], [
                      activation.Sigmoid(),
                      activation.Sigmoid(),
                      activation.Sigmoid(),
                      activation.Sigmoid(),
                      activation.Sigmoid(),
                      activation.Identity()
                  ],
                  weight_init,
                  bias_init,
                  loss.SoftmaxCrossEntropy(),
                  0.008,
                  momentum=0.0,
                  num_bn_layers=0)
    mlp.forward(x)
    mlp.backward(y)

    dW = [x.dW for x in mlp.linear_layers]
    db = [x.db for x in mlp.linear_layers]

    for i, (pred, gt) in enumerate(zip(dW, soldW)):
        closeness_test(pred, gt, "mlp.linear_layers[%d].dW" % i)

    for i, (pred, gt) in enumerate(zip(db, soldb)):
        closeness_test(pred, gt, "mlp.linear_layers[%d].db" % i)
Exemplo n.º 6
0
def test_mystery_hidden_forward1():
    data = saved_data[13]
    x = data[0]
    gt = data[1]
    reset_prng()
    mlp = hw1.MLP(784, 10, [64, 32], [activation.Sigmoid(), activation.Sigmoid(), activation.Identity()],
                  weight_init, bias_init, loss.SoftmaxCrossEntropy(), 0.008,
                  momentum=0.0, num_bn_layers=0)

    pred = mlp.forward(x)
    closeness_test(pred, gt, "mlp.forward(x)")
Exemplo n.º 7
0
    def feed_forward(self, W1, W2, B1, B2):
        delta = 1e-7  #log 무한대 발산 방지를 위해 추가한다.

        A1 = np.dot(self.input_data, W1) + B1
        Z1 = activation.Sigmoid(A1)
        A2 = np.dot(Z1, W2) + B2
        y = activation.Sigmoid(A2)

        # 로그 최대 우도 추정법을 사용한다.
        return -np.sum(self.target_data * np.log(y + delta) +
                       (1 - self.target_data) * np.log((1 - y) + delta))
Exemplo n.º 8
0
    def cost(self):
        delta = 1e-7  # log 무한대 발산 방지를 위해 추가한다.

        A1 = np.dot(self.input_data, self.W1) + self.B1
        Z1 = activation.Sigmoid(A1)
        A2 = np.dot(Z1, self.W2) + self.B2
        y = activation.Sigmoid(A2)

        # 로그 최대 우도 추정법을 사용한다.
        cost_val = -np.sum(self.target_data * np.log(y + delta) +
                           (1 - self.target_data) * np.log((1 - y) + delta))
        return cost_val
Exemplo n.º 9
0
def test_sigmoid_forward():
    data = saved_data[5]
    t0 = data[0]
    gt = data[1]
    student = activation.Sigmoid()
    student(t0)
    closeness_test(student.state, gt, "sigmoid.state")
Exemplo n.º 10
0
def test_sigmoid_derivative():
    data = saved_data[6]
    t0 = data[0]
    gt = data[1]
    student = activation.Sigmoid()
    student(t0)
    closeness_test(student.derivative(), gt, "sigmoid.derivative()")
Exemplo n.º 11
0
def test_sigmoid():
    print("gradient check: Sigmoid")
    x = np.random.rand(5 * 8).reshape((5, 8)).astype('float32')
    y = np.random.rand(5 * 8).reshape((5, 8)).astype('float32')

    sigmoid = activation.Sigmoid()
    sqaure_loss_func = loss.SquareLoss()

    sigmoid_x = sigmoid(x)
    square_loss = sqaure_loss_func(sigmoid_x, y)

    torch_x = torch.Tensor(x)
    torch_x.requires_grad = True
    sigmoid_torch = nn.Sigmoid()
    square_loss_func_torch = nn.MSELoss()
    sigmoid_x_torch = sigmoid_torch(torch_x)
    sqaure_loss_torch = square_loss_func_torch(sigmoid_x_torch,
                                               torch.Tensor(y))

    print("Value:\ntorch:{},mine:{}, delta:{}".format(
        sqaure_loss_torch.item(), square_loss,
        (sqaure_loss_torch.item() - square_loss)))

    # --- my grad ---
    grad_sigmoid = sqaure_loss_func.backward()
    grad_x = sigmoid.backward(grad_sigmoid)

    # --- torch grad ---
    sqaure_loss_torch.backward()
    grad_x_torch = torch_x.grad.data.numpy()

    print(grad_x_torch - grad_x)
Exemplo n.º 12
0
def test_sigmoid():
    s = activation.Sigmoid()
    print(s(0))
    print(s(-3))
    print(s(3))
    print(s(500))
    print(s(-1000))
    print(
        s(-999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
          ))
Exemplo n.º 13
0
Arquivo: ANN.py Projeto: mk2908/WSD
    def __init__(self):
        self.weights = None
        self.weightdeltas = None
        self.inputsum = None

        # Default hidden node activation is sigmoidal. To change,
        # simply set neuron.activation to any of the activation
        # functions in the activation module after the neuron has been
        # instantiated.
        self.activation = activation.Sigmoid()
Exemplo n.º 14
0
def main():
    np.random.seed(1)

    alpha = 0.03  # 学习率 learning rate
    sigmoid = activation.Sigmoid()

    a0, y = loadData()  # A,B,C,D
    # 1,1,1,0
    # 0,1,1,1
    # 0,0,1,0
    # 1,0,1,1
    # 0,0,0,0
    # 0,1,0,1
    # 1,1,0,0
    # 1,0,0,1
    # 每层节点个数:l0-3, l1-4, l2-1,可以确定权重矩阵的维度
    w1 = generateWeights((3, 4))
    w2 = generateWeights((4, 1))

    for i in range(100000):
        z1 = np.dot(a0, w1)  # 正向过程:每一级的输出都是下一级的输入
        a1 = sigmoid(z1)  #

        z2 = np.dot(a1, w2)
        a2 = sigmoid(z2)

        loss = Loss(a2, y)  # 反向过程,由后至前反推一遍
        grad_a2 = loss.gradient()
        grad_z2 = grad_a2 * sigmoid.gradient(z2)
        grad_w2 = np.dot(a1.T, grad_z2) / len(a1)  # 成本函数对应的是平均值

        grad_a1 = np.dot(grad_z2, w2.T)  # 死公式,但很有意思
        # 这一步非常重要,而且不太好理解,最好能多通过流程图在稿纸上多演算几次运算过程和矩阵乘法
        grad_z1 = grad_a1 * sigmoid.gradient(z1)
        grad_w1 = np.dot(a0.T, grad_z1) / len(a0)
        # 看反向过程的每一层都有求da, dz, dw。而且基本都是死公式

        w1 -= alpha * grad_w1
        w2 -= alpha * grad_w2

    # 验证
    s0 = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1],
          [1, 1, 0], [1, 1, 1]]
    s1 = np.dot(s0, w1)
    s2 = sigmoid(s1)
    s3 = np.dot(s2, w2)
    s4 = sigmoid(s3)
    print(s4)
Exemplo n.º 15
0
def main():
    np.random.seed(1)
    a0, y = loadData()
    
    w0, b0 = layer.Layer.randomW_B(3, 4)
    w1, b1 = layer.Layer.randomW_B(4, 1)
    l0 = layer.Layer(
        w0,
        b0,
        learning_rate=0.3,
        act=activation.LeakyReLU()
    )
    l1 = layer.Layer(
        w1,
        b1,
        learning_rate=0.3,
        act=activation.Sigmoid()
    )

    for i in range(10000):
        a1 = l0.fp(a0)
        a2 = l1.fp(a1)
        loss = Loss(a2, y)  # 反向过程,由后至前反推一遍
        g_a2 = loss.gradient()
        g_a1 = l1.bp(g_a2)
        l0.bp(g_a1)

        # 验证
    s0 = [
        [0, 0, 0],
        [0, 0, 1],
        [0, 1, 0],
        [0, 1, 1],
        [1, 0, 0],
        [1, 0, 1],
        [1, 1, 0],
        [1, 1, 1]]
    s1 = l0.fp(s0)
    s2 = l1.fp(s1)
    print(s2)
Exemplo n.º 16
0
    def __init__(self,
                 is_leaky_relu: bool = False,
                 leakage_coeff: float = 0.2):
        self._relu = activation.ReLU(
            is_leaky=is_leaky_relu,
            leakage=leakage_coeff if is_leaky_relu else 0)
        self._sigmoid = activation.Sigmoid()
        self._identity = activation.Identity()

        self._network = [[
            Perceptron(num_inputs, self._relu)
            for _ in range(hiddenlayer1_size)
        ],
                         [
                             Perceptron(hiddenlayer1_size, self._relu)
                             for _ in range(hiddenlayer2_size)
                         ],
                         [
                             Perceptron(hiddenlayer2_size, self._sigmoid)
                             for _ in range(num_outputs)
                         ]]
        self._mn_data = MNIST('./images')
        self._desired_changes = None
        self._layer_inputs = None
Exemplo n.º 17
0
def learnNN(chromaNorm = 'L1', constantQNorm = 'Linf', deltaTrain = 2, nnStruct = [256, 50, 24], errorFunc = 'SSE', verbose = False):
    '''
    Learns neural network weights with unbuffered feature input: store all features in main memory and do one giant batch train.

    PARAMETERS
    ----------
    chromaNorm: L1, L2, Linf, or None, normalization of chroma
    constantQNorm: L1, L2, Linf, or None, normalization of constant q transform
    nnStruct {List}: neural network layer list (each element is number of neurons at the layer
    errorFunc {String}: 'KLDiv' or 'SSE'
    verbose {Boolean}: report progress to standard out

    RETURN
    ------
    net: trained neural network
    '''

    # Set up neural network
    # uses sigmoid activation function by default at each layer
    # output activation depends on the type of chromaNorm specified
    activations = [act.Sigmoid()] * (len(nnStruct)-2)
    if chromaNorm == 'L1':
        # partitioned SoftMax output (L1 normalization for each chromagram)
        activations.append(act.SoftMax([12]))
    elif chromaNorm == 'L2':
        activations.append(act.Identity())
    elif chromaNorm == 'Linf':
        activations.append(act.Sigmoid())
    else:
        activations.append(act.Identity())

    # Instantiate neural network
    # assumes full connectivity between layer neurons.
    net = nn.NeuralNet(nnStruct, actFunc=activations)

    if verbose:
        print "Retrieving Features."

    # read constant-q transform preliminary features
    Xtrain = np.loadtxt('data/logfreqspec.csv', dtype=np.float, delimiter=',', usecols=range(1,257))
    # read bass and treble chromagram features
    Xtarget = np.loadtxt('data/bothchroma.csv', dtype=np.float, delimiter=',', usecols=range(1,25))

    if verbose:
        print "Normalizing Features."

    divInd = np.sum(Xtrain, axis=1) != 0
    # perform feature normalization
    if constantQNorm == 'L1':
        Xtrain[divInd,:] /= np.sum(np.abs(Xtrain[divInd,:]), axis=1)[:,np.newaxis]
    elif constantQNorm == 'L2':
        Xtrain[divInd,:] /= np.sum(Xtrain[divInd,:] ** 2, axis=1)[:,np.newaxis]
    elif constantQNorm == 'Linf':
        Xtrain[divInd,:] /= np.max(np.abs(Xtrain[divInd,:]), axis=1)[:,np.newaxis]
    del divInd

    divIndTreble = np.sum(Xtarget[:,0:12], axis=1) != 0
    divIndBass = np.sum(Xtarget[:,12:24], axis=1) != 0
    # perform feature normalization
    if chromaNorm == 'L1':
        Xtarget[divIndTreble,0:12] /= np.sum(np.abs(Xtarget[divIndTreble,0:12]), axis=1)[:,np.newaxis]
        Xtarget[divIndBass,12:24] /= np.sum(np.abs(Xtarget[divIndBass,12:24]), axis=1)[:,np.newaxis]
    elif chromaNorm == 'L2':
        Xtarget[divIndTreble,0:12] /= np.sum(Xtarget[divIndTreble,0:12] ** 2, axis=1)[:,np.newaxis]
        Xtarget[divIndBass,12:24] /= np.sum(Xtarget[divIndBass,12:24] ** 2, axis=1)[:,np.newaxis]
    elif chromaNorm == 'Linf':
        Xtarget[divIndTreble,0:12] /= np.max(np.abs(Xtarget[divIndTreble,0:12]), axis=1)[:,np.newaxis]
        Xtarget[divIndBass,12:24] /= np.max(np.abs(Xtarget[divIndBass,12:24]), axis=1)[:,np.newaxis]
    del divIndTreble
    del divIndBass

    # batch train Neural Network
    trainNet(Xtrain, Xtarget, net, errorFunc, verbose)

    if verbose:
        print "All done!"

    return net
Exemplo n.º 18
0
import activation as act
import cost_functions as cost

from data_prep import DataPrep
from NeuralNetwork import DenseLayer, NeuralNetwork
from NN_keras import Keras

# set the parameters
n = 100
n_epochs = 300
n_batches = 100
eta = 0.5
lmbda = 0
neurons = [10, 10]
n_outputs = 1
hidden_act = act.Sigmoid()
output_act = act.Identity()

# create data using franke function
seed = 2034
np.random.seed(seed)
x = np.sort(np.random.uniform(0, 1, n))
y = np.sort(np.random.uniform(0, 1, n))
x, y = np.meshgrid(x, y)
z = np.ravel(f.FrankeFunction(x, y) + 0.1*np.random.randn(x.shape[0], x.shape[1]))
z = z.reshape(-1, 1)

# set up the design matrix
data = DataPrep()
X = data.design_matrix(x, y, degree=1)[:, 1:]
Exemplo n.º 19
0
def f(x):
    return (0.5 * np.sin(x)) + 0.5, (0.3 * np.cos(x)) + 0.3


# create train samples
xtrain = np.linspace(-7, 7, numTrain).reshape(numTrain, 1)
ytrain = np.zeros([numTrain, 2])
ytrain[:, 0] = f(xtrain)[0].squeeze()
ytrain[:, 1] = f(xtrain)[1].squeeze()

# Instantiate neural network with 2 layers.
# The hidden layer has 5 neurons, with 1 output.
# assumes full connectivity between layer neurons.
# uses sigmoid activation function by default at each layer.
net = nn.NeuralNet([1, 100, 50, 2],
                   actFunc=[act.Sigmoid(),
                            act.Sigmoid(),
                            act.ArcTan()])

# hire a trainer for the network
trainer = nn.Trainer(net, 'SSE', 25, xtrain, ytrain)

# train using BFGS and sum of squares error
#optArgs = {'gtol': 1e-6, 'maxiter': 250}
#trainer.trainBFGS(**optArgs)

optArgs = {
    'bounds': None,
    'm': 1000,
    'factr': 1e7,
    'pgtol': 1e-02,
Exemplo n.º 20
0
def __register_unary_math_op__(op_name, act):
    def op(input, name=None):
        return layer.mixed(input=[layer.identity_projection(input=input)],
                           name=name,
                           act=act)

    op = wrap_name_default(op_name)(op)
    op.__doc__ = type(act).__doc__
    globals()[op_name] = op
    __all__.append(op_name)


__register_unary_math_op__('exp', act.Exp())
__register_unary_math_op__('log', act.Log())
__register_unary_math_op__('abs', act.Abs())
__register_unary_math_op__('sigmoid', act.Sigmoid())
__register_unary_math_op__('tanh', act.Tanh())
__register_unary_math_op__('square', act.Square())
__register_unary_math_op__('relu', act.Relu())
__register_unary_math_op__('sqrt', act.Sqrt())
__register_unary_math_op__('reciprocal', act.Reciprocal())
__register_unary_math_op__('softmax', act.Softmax())


def __add__(layeroutput, other):
    if is_compatible_with(other, float):
        return layer.slope_intercept(input=layeroutput, intercept=other)
    if not isinstance(other, Layer):
        raise TypeError("Layer can only be added with"
                        " another Layer or a number")
    if layeroutput.size == other.size:
Exemplo n.º 21
0
 
 if choice == 0:
     epochs = int(input("Please input how many epochs you want to train over [DEFAULT = 6000] : ") or "6000")
     print("")
     criterion = loss.LossBCE()
     model = sequential.Sequential(
         layer.Linear(2, 25),
         activation.ReLU(),
         layer.Linear(25, 50),
         activation.ReLU(),
         layer.Linear(50, 50),
         activation.ReLU(),
         layer.Linear(50, 25),
         activation.ReLU(),
         layer.Linear(25, 1),
         activation.Sigmoid()
     )
     train_target[((train_input-0.5)**2).sum(1) < 1/(2*math.pi)] = 0
     train_target[((train_input-0.5)**2).sum(1) >= 1/(2*math.pi)] = 1
     test_target[((test_input-0.5)**2).sum(1) < 1/(2*math.pi)] = 0
     test_target[((test_input-0.5)**2).sum(1) >= 1/(2*math.pi)] = 1
     ps = model.parameters()
     optim = optimizer.SGD(model.parameters(), lr=0.05, decay=500)
     #for plotting later
     levels = [0, 0.25, 0.5, 0.75, 1]
     #for accuracy computation
     sigmoid = True
  
 else:
     epochs = int(input("Please input how many epochs you want to train over [DEFAULT = 4000] : ") or "4000")
     print("")
Exemplo n.º 22
0
def test_activations():
    check_activation(activation.Sigmoid())
    check_activation(activation.ReLU())
Exemplo n.º 23
0
def testNNFeature(getSong=1, chromaNorm='L1', constantQNorm='L1'):
    # initialize feature storage
    Xtrain = []  # Constant-Q transform
    Xtarget = []  # Bass and treble chromagram

    nnStruct = [256, 24]

    # Set up neural network
    # uses sigmoid activation function by default at each layer
    # output activation depends on the type of chromaNorm specified
    activations = [act.Sigmoid()] * (len(nnStruct) - 2)
    if chromaNorm == 'L1':
        # partitioned SoftMax output (L1 normalization for each chromagram)
        activations.append(act.SoftMax([12]))
    elif chromaNorm == 'L2':
        activations.append(act.Identity())
    elif chromaNorm == 'Linf':
        activations.append(act.Sigmoid())
    else:
        activations.append(act.Identity())

    # Instantiate neural network
    # assumes full connectivity between layer neurons.
    net = nn.NeuralNet(nnStruct, actFunc=activations)

    # load in trained weights
    wstar = np.load("trainedweights/wstar_grad_KLDiv_[0]_0.75_100iter.npy")
    net.setWeights(wstar)

    # read constant-q transform preliminary features
    qFile = open('data/logfreqspec.csv', 'r')
    # read bass and treble chromagram features
    cFile = open('data/bothchroma.csv', 'r')

    songNum = 0
    songPath = ''
    for cObs, qObs in izip(cFile, qFile):
        cObs = cObs.split(",")
        qObs = qObs.split(",")

        # check if we have moved to a new song
        if cObs[0]:
            # check features are in sync by audio file path
            if not qObs[0] or cObs[0] != qObs[0]:
                raise ValueError("Feature files out of sync")

            # run gathered features through the neural net and return the values
            if songNum > 0 and songNum == getSong:
                print "Processing song #%d, %s" % (songNum, songPath)

                train = np.asarray(Xtrain)
                target = np.asarray(Xtarget)
                output = net.calcOutput(train)
                return train, output, target

            songNum += 1
            songPath = cObs[0]

        if songNum != getSong:
            continue

        # double check features are in sync by timestamp
        if float(cObs[1]) != float(qObs[1]):
            raise ValueError("Feature files out of sync")

        # get chromagrams
        chroma = np.asfarray(cObs[2:])

        # avoid divide by zero (this is silence in audio)
        #if np.sum(chroma) == 0:
        #    continue

        # perform feature normalization
        if chromaNorm == 'L1':
            if np.sum(chroma[0:12]) != 0:
                chroma[0:12] /= np.sum(np.abs(chroma[0:12]))
            if np.sum(chroma[12:24]) != 0:
                chroma[12:24] /= np.sum(np.abs(chroma[12:24]))
        elif chromaNorm == 'L2':
            if np.sum(chroma[0:12]) != 0:
                chroma[0:12] /= np.sum(chroma[0:12]**2)
            if np.sum(chroma[12:24]) != 0:
                chroma[12:24] /= np.sum(chroma[12:24]**2)
        elif chromaNorm == 'Linf':
            if np.sum(chroma[0:12]) != 0:
                chroma[0:12] /= np.max(np.abs(chroma[0:12]))
            if np.sum(chroma[12:24]) != 0:
                chroma[12:24] /= np.max(np.abs(chroma[12:24]))

        Xtarget.append(chroma)

        # get Constant-Q transform
        constantQ = np.asfarray(qObs[2:])

        # perform feature normalization
        if constantQNorm is not None and np.sum(constantQ) != 0:
            if constantQNorm == 'L1':
                constantQ /= np.sum(np.abs(constantQ))
            elif constantQNorm == 'L2':
                constantQ /= np.sum(constantQ**2)
            elif constantQNorm == 'Linf':
                constantQ /= np.max(np.abs(constantQ))

        Xtrain.append(constantQ)
Exemplo n.º 24
0
def mixlearnNNbuff(chromaNorm='L1',
                   constantQNorm=None,
                   deltaTrain=2,
                   nnStruct=[256, 150, 24],
                   errorFunc='SSE',
                   verbose=False,
                   numDataPass=1):
    '''
    Learns neural network weights with buffered feature input (batch training in segments).
    Use this function when thrashing to disk is a possibility

    PARAMETERS
    ----------
    chromaNorm: L1, L2, Linf, or None, normalization of chroma
    constantQNorm: L1, L2, Linf, or None, normalization of constant q transform
    deltaTrain {int}: how many songs to train after. Buffering features prevents thrashing to disk.
    nnStruct {List}: neural network layer list (each element is number of neurons at the layer
    errorFunc {String}: 'KLDiv' or 'SSE'
    verbose {Boolean}: report progress to standard out

    RETURN
    ------
    net: trained neural network
    '''

    # initialize feature storage
    Xtrain = []  # Constant-Q transform
    Xtarget = []  # Bass and treble chromagram

    # Set up neural network
    # uses sigmoid activation function by default at each layer
    # output activation depends on the type of chromaNorm specified
    activations = [act.Sigmoid()] * (len(nnStruct) - 2)
    if chromaNorm == 'L1':
        # partitioned SoftMax output (L1 normalization for each chromagram)
        activations.append(act.SoftMax([12]))
    elif chromaNorm == 'L2':
        activations.append(act.Identity())
    elif chromaNorm == 'Linf':
        activations.append(act.Sigmoid())
    else:
        activations.append(act.Identity())

    # Instantiate neural network
    # assumes full connectivity between layer neurons.
    net = nn.NeuralNet(nnStruct, actFunc=activations)

    # hire a trainer for the network
    trainer = nn.Trainer(net, errorFunc, 1)

    for iDataset in range(numDataPass):
        print "DATASET PASS %d" % (iDataset + 1)

        # get feature file pointers
        qtransFiles, chromaFiles = process_dir("data/burgoyne2011chords")

        # until all the feature files have been exhausted
        passInd = 0
        while len(qtransFiles) > 0 and len(chromaFiles) > 0:
            # for each pair of feature files that remain
            i = 0
            for qFile, cFile in izip(qtransFiles[:], chromaFiles[:]):
                # open Constant-Q file and restore reading offset
                qFilePtx = open(qFile["path"], 'r')
                qFilePtx.seek(qFile["offset"])
                # read an observation
                qObs = qFilePtx.readline().strip()

                # we've exhausted the observations in this song
                if not qObs:
                    print "DONE WITH SONG: %s" % qFile["path"]
                    # remove from the processing queue
                    del qtransFiles[i]
                    del chromaFiles[i]
                    continue

                # update offset
                qtransFiles[i]["offset"] = qFilePtx.tell()
                # close the file pointer
                qFilePtx.close()

                # open chroma file and restore reading offset
                cFilePtx = open(cFile["path"], 'r')
                cFilePtx.seek(cFile["offset"])
                # read an observation
                cObs = cFilePtx.readline().strip()
                # update offset
                chromaFiles[i]["offset"] = cFilePtx.tell()
                # close the file pointer
                cFilePtx.close()
                i += 1

                if passInd < 50:
                    continue

                qObs = qObs.split(",")
                cObs = cObs.split(",")

                # check features are in sync by timestamp
                if float(cObs[0]) != float(qObs[0]):
                    raise ValueError("Feature files out of sync")

                # get chromagrams
                chroma = np.asfarray(cObs[1:])

                # avoid divide by zero (this is silence in audio)
                if np.sum(chroma) < 3.0:
                    continue

                # perform feature normalization
                if chromaNorm == 'L1':
                    if np.sum(chroma[0:12]) != 0:
                        chroma[0:12] /= np.sum(np.abs(chroma[0:12]))
                    if np.sum(chroma[12:24]) != 0:
                        chroma[12:24] /= np.sum(np.abs(chroma[12:24]))
                elif chromaNorm == 'L2':
                    if np.sum(chroma[0:12]) != 0:
                        chroma[0:12] /= np.sum(chroma[0:12]**2)
                    if np.sum(chroma[12:24]) != 0:
                        chroma[12:24] /= np.sum(chroma[12:24]**2)
                elif chromaNorm == 'Linf':
                    if np.sum(chroma[0:12]) != 0:
                        chroma[0:12] /= np.max(np.abs(chroma[0:12]))
                    if np.sum(chroma[12:24]) != 0:
                        chroma[12:24] /= np.max(np.abs(chroma[12:24]))

                Xtarget.append(chroma)

                # get Constant-Q transform
                constantQ = np.asfarray(qObs[1:])

                # perform feature normalization
                if constantQNorm is not None and np.sum(constantQ) != 0:
                    if constantQNorm == 'L1':
                        constantQ /= np.sum(np.abs(constantQ))
                    elif constantQNorm == 'L2':
                        constantQ /= np.sum(constantQ**2)
                    elif constantQNorm == 'Linf':
                        constantQ /= np.max(np.abs(constantQ))

                Xtrain.append(constantQ)

            # train on this pass
            if len(Xtrain) > 0:
                print "Xtrain: ", len(Xtrain), ", Xtarget: ", len(Xtarget)
                train = np.asarray(Xtrain)
                target = np.asarray(Xtarget)

                trainer.setData(train, target)
                trainNet(trainer, verbose)

                # clear feature buffers
                del Xtrain[:]
                del Xtarget[:]

            passInd += 1
            print "pass: "******"Done training neural network."

    return net
Exemplo n.º 25
0
reportString += "input: " + nl + str(x) + nl
reportString += "weight layer 1: " + nl + str(w1) + nl
reportString += "bias layer 1: " + nl + str(b1) + nl
reportString += "weight layer 2: " + nl + str(w2) + nl
reportString += "bias layer 2: " + nl + str(b2) + nl
reportString += "learning rate: " + str(alpha) + nl
reportString += "target: " + nl + str(t) + nl
reportString += "epoch: " + str(epoch) + cut

for i in range(0, epoch):
    for j in range(0, len(t)):
        # -- Forward --
        x_sample = x[j].reshape(1, x[j].shape[0])
        t_sample = t[j].reshape(1, t[j].shape[0])
        z = a.Sigmoid(x_sample.dot(w1) - b1)
        y = a.Sigmoid(z.dot(w2) - b2)

        # -- Backprop --
        e2 = t_sample - y
        g2 = y * (1 - y) * e2
        w2_delta = alpha * np.dot(z.transpose(), g2)
        b2_delta = alpha * -1.0 * g2
        w2 = w2 + w2_delta

        e1 = np.dot(w2, g2.transpose()).transpose()
        g1 = z * (1 - z) * e1
        w1_delta = alpha * np.dot(x_sample.transpose(), g1)
        b1_delta = alpha * -1.0 * g1
        w1 = w1 + w1_delta
Exemplo n.º 26
0
def learnNNbuff(chromaNorm = 'L1', constantQNorm = None, deltaTrain = 2, nnStruct = [256, 150, 24], errorFunc = 'SSE', verbose = False):
    '''
    Learns neural network weights with buffered feature input (batch training in segments).
    Use this function when thrashing to disk is a possibility

    PARAMETERS
    ----------
    chromaNorm: L1, L2, Linf, or None, normalization of chroma
    constantQNorm: L1, L2, Linf, or None, normalization of constant q transform
    deltaTrain {int}: how many songs to train after. Buffering features prevents thrashing to disk.
    nnStruct {List}: neural network layer list (each element is number of neurons at the layer
    errorFunc {String}: 'KLDiv' or 'SSE'
    verbose {Boolean}: report progress to standard out

    RETURN
    ------
    net: trained neural network
    '''
    
    # initialize feature storage
    Xtrain = []     # Constant-Q transform
    Xtarget = []    # Bass and treble chromagram

    # Set up neural network
    # uses sigmoid activation function by default at each layer
    # output activation depends on the type of chromaNorm specified
    activations = [act.Sigmoid()] * (len(nnStruct)-2)
    if chromaNorm == 'L1':
        # partitioned SoftMax output (L1 normalization for each chromagram)
        activations.append(act.SoftMax([12]))
    elif chromaNorm == 'L2':
        activations.append(act.Identity())
    elif chromaNorm == 'Linf':
        activations.append(act.Sigmoid())
    else:
        activations.append(act.Identity())

    # Instantiate neural network
    # assumes full connectivity between layer neurons.
    net = nn.NeuralNet(nnStruct, actFunc=activations)

    # hire a trainer for the network
    trainer = nn.Trainer(net, errorFunc, 1)

    # read constant-q transform preliminary features
    qFile = open('data/logfreqspec.csv', 'r')
    # read bass and treble chromagram features
    cFile = open('data/bothchroma.csv', 'r')

    songNum = 0
    eligibleTrain = False
    for cObs, qObs in izip(cFile, qFile):
        cObs = cObs.split(",")
        qObs = qObs.split(",")
        
        # check if we have moved to a new song
        if cObs[0]:
            # check features are in sync by audio file path
            if not qObs[0] or cObs[0] != qObs[0]:
                raise ValueError("Feature files out of sync")
                                    
            # train the neural net with buffered features from the previous songs
            if songNum > 0 and songNum % deltaTrain == 0:
                trainer.setData(np.asarray(Xtrain), np.asarray(Xtarget))
                trainNet(trainer, verbose)
                # clear feature buffers
                del Xtrain[:]
                del Xtarget[:]

            songNum += 1

            if verbose:
                print "Processing song: ", cObs[0]
       
        # double check features are in sync by timestamp
        if float(cObs[1]) != float(qObs[1]):
            raise ValueError("Feature files out of sync")
        
        # get chromagrams
        chroma = np.asfarray(cObs[2:])

        # avoid divide by zero (this is silence in audio)
        if np.sum(chroma) == 0:
            continue

        # perform feature normalization
        if chromaNorm == 'L1':
            if np.sum(chroma[0:12]) != 0:
                chroma[0:12] /= np.sum(np.abs(chroma[0:12]))
            if np.sum(chroma[12:24]) != 0:
                chroma[12:24] /= np.sum(np.abs(chroma[12:24]))
        elif chromaNorm == 'L2':
            if np.sum(chroma[0:12]) != 0:
                chroma[0:12] /= np.sum(chroma[0:12] ** 2)
            if np.sum(chroma[12:24]) != 0:
                chroma[12:24] /= np.sum(chroma[12:24] ** 2)
        elif chromaNorm == 'Linf':
            if np.sum(chroma[0:12]) != 0:
                chroma[0:12] /= np.max(np.abs(chroma[0:12]))
            if np.sum(chroma[12:24]) != 0:
                chroma[12:24] /= np.max(np.abs(chroma[12:24]))

        Xtarget.append(chroma)

        # get Constant-Q transform
        constantQ = np.asfarray(qObs[2:])
        
        # perform feature normalization
        if constantQNorm is not None and np.sum(constantQ) != 0:
            if constantQNorm == 'L1':
                constantQ /= np.sum(np.abs(constantQ))
            elif constantQNorm == 'L2':
                constantQ /= np.sum(constantQ ** 2)
            elif constantQNorm == 'Linf':
                constantQ /= np.max(np.abs(constantQ))

        Xtrain.append(constantQ)

    # train leftovers (< deltaTrain songs)
    if len(Xtrain) > 0:
        trainer.setData(np.asarray(Xtrain), np.asarray(Xtarget))
        trainNet(trainer, verbose)

    if verbose:
        print "Done training neural network."

    qFile.close()
    cFile.close()

    return net