Exemplo n.º 1
0
def reuse_example():
    n, w = example('data/2021-02-06 12-16-42 wan-ticks.npz')

    σs = []
    contrast = 0
    soln = activelo.solve(n, w)
    for _ in range(20):
        # Strip out this `soln=soln` to suppress soln reuse
        soln = activelo.solve(n, w, soln=soln)
        μ, Σ = soln.μ, soln.Σ 
        σ2 = np.diag(Σ) + Σ[contrast, contrast] - 2*Σ[contrast]
        σs.append(σ2[-1]**.5)
    σs = np.array(σs)
Exemplo n.º 2
0
    def play(self, agent):
        size = self.worlds.boardsize
        games = json.symmetric_games(f'mohex-{size}').pipe(append, 'agent')
        wins = json.symmetric_wins(f'mohex-{size}').pipe(append, 'agent')
        for result in self.history:
            games.loc[result.names[0], result.names[1]] += result.games
            games.loc[result.names[1], result.names[0]] += result.games
            wins.loc[result.names[0], result.names[1]] += result.wins[0]
            wins.loc[result.names[1], result.names[0]] += result.wins[1]

        self.soln = activelo.solve(games, wins, soln=self.soln)
        μ, σ = analysis.difference(self.soln, 'mohex-0.00', 'agent')
        log.info(
            f'Agent elo is {μ:.2f}±{σ:.2f} based on {int(games.loc["agent"].sum())} games'
        )
        stats.mean_std('elo-mohex', μ, σ)

        imp = activelo.improvement(self.soln)
        imp = pd.DataFrame(imp, games.index, games.index)

        challenger = imp['agent'].idxmax()
        randomness = float(challenger.split('-')[1])
        self.mohex.random = randomness
        results = common.evaluate(self.worlds, {
            'agent': agent,
            challenger: self.mohex
        })
        log.info(
            f'Agent played {challenger}, {int(results[0].wins[0] + results[1].wins[1])}-{int(results[0].wins[1] + results[1].wins[0])}'
        )
        self.history.extend(results)

        return arrdict.arrdict(games=games.loc['agent'].sum(), mean=μ, std=σ)
Exemplo n.º 3
0
    def play(self, agent):
        self.soln = activelo.solve(self.games, self.wins, soln=self.soln)
        μ, σ = analysis.difference(self.soln, 'mohex-0.00', 'agent')
        log.info(
            f'Agent elo is {μ:.2f}±{σ:.2f} based on {int(self.games.loc["agent"].sum())} games'
        )

        imp = activelo.improvement(self.soln)
        imp = pd.DataFrame(imp, self.games.index, self.games.index)

        challenger = imp['agent'].idxmax()
        randomness = float(challenger.split('-')[1])
        self.mohex.random = randomness
        results = common.evaluate(self.worlds, {
            'agent': agent,
            challenger: self.mohex
        })
        log.info(
            f'Agent played {challenger}, {int(results[0].wins[0] + results[1].wins[1])}-{int(results[0].wins[1] + results[1].wins[0])}'
        )

        for result in results:
            self.games.loc[result.names[0], result.names[1]] += result.games
            self.games.loc[result.names[1], result.names[0]] += result.games
            self.wins.loc[result.names[0], result.names[1]] += result.wins[0]
            self.wins.loc[result.names[1], result.names[0]] += result.wins[1]

        return arrdict.arrdict(games=self.games.loc['agent'].sum(),
                               mean=μ,
                               std=σ), results
Exemplo n.º 4
0
def saved_example(filename):
    n, w = example(filename)

    soln = activelo.solve(n, w)

    activelo.plot(soln)

    return soln
Exemplo n.º 5
0
def generated_example():
    N = 20
    truth = torch.randn(N)
    n = torch.randint(1, 50, (N, N))

    d = truth[:, None] - truth[None, :]
    w = torch.distributions.Binomial(n, 1/(1 + np.exp(-d))).sample()

    trace = activelo.solve(n, w)

    activelo.plot(trace)
Exemplo n.º 6
0
def elos(run_name, names=None, queue=[]):
    n = (json.symmetric_games(run_name).reindex(index=names,
                                                columns=names).fillna(0))
    w = (json.symmetric_wins(run_name).reindex(index=names,
                                               columns=names).fillna(0))

    for (i, j) in queue:
        ni, nj = names[i], names[j]
        w.loc[ni, nj] += (w.loc[ni, nj] + 1) / (n.loc[ni, nj] + 2)
        n.loc[ni, nj] += 1

    return activelo.solve(n.values, w.values)
Exemplo n.º 7
0
def stds():
    n, w = solvers.example('data/2021-02-06 12-16-42 wan-ticks.npz')

    σs = []
    contrast = 0
    for _ in range(20):
        soln = activelo.solve(n, w)
        μ, Σ = soln.μ, soln.Σ 
        σ2 = np.diag(Σ) + Σ[contrast, contrast] - 2*Σ[contrast]
        σs.append(σ2[-1]**.5)
    σs = np.array(σs)

    return σs
Exemplo n.º 8
0
def elos(run, target=None, filter='.*'):
    run = runs.resolve(run)
    games, wins = json.symmetric(run)
    games, wins = mask(games, wins, filter)

    soln = activelo.solve(games.values, wins.values)
    soln = pandas(soln, games.index)

    if isinstance(target, int):
        μ, σ = difference(soln, soln.μ.index[target])
    elif isinstance(target, str):
        μ, σ = difference(soln, target)
    else:
        μ, σ = soln.μ, pd.Series(np.diag(soln.Σ)**.5, games.index)

    return pd.concat({'μ': μ, 'σ': σ}, 1)
Exemplo n.º 9
0
def simulate(truth, n_games=256, σresid_tol=.1):
    n_agents = len(truth)
    wins = torch.zeros((n_agents, n_agents))
    games = torch.zeros((n_agents, n_agents))

    trace = []
    ranks = torch.full((n_agents, ), 0.)
    while True:
        soln = activelo.solve(games, wins)
        ranks = torch.as_tensor(soln.μ)

        black, white = activelo.suggest(soln)
        black_wins = torch.distributions.Binomial(
            n_games, winrate(truth[black], truth[white])).sample()
        wins[black, white] += black_wins
        wins[white, black] += n_games - black_wins
        games[black, white] += n_games
        games[white, black] += n_games

        soln['n'] = games.clone()
        soln['w'] = wins.clone()
        soln['σresid'] = residual_vs_mean(soln.Σ).mean()**.5
        soln['resid_var'] = resid_var(ranks, truth)
        trace.append(
            arrdict.arrdict({k: v
                             for k, v in soln.items() if k != 'trace'}))

        plt.close()
        from IPython import display
        display.clear_output(wait=True)
        display.display(plot(trace, truth))
        if soln.σresid < σresid_tol:
            break

    trace = arrdict.stack(trace)

    return trace
Exemplo n.º 10
0
def errors(run=-1, filter='.*'):
    run = runs.resolve(run)
    games, wins = database.symmetric(run)
    games, wins = analysis.mask(games, wins, filter)
    soln = activelo.solve(games.values, wins.values)

    rates = wins / games

    expected = 1 / (1 + np.exp(-soln.μ[:, None] + soln.μ[None, :]))
    actual = rates.where(games > 0, np.nan).values

    resid_var = np.nanmean((actual - expected)**2) / np.nanmean(actual**2)
    corr = np.corrcoef(actual[~np.isnan(actual)],
                       expected[~np.isnan(actual)])[0, 1]

    mohex = stats.pandas(
        run, 'elo-mohex',
        'μ').pipe(lambda df: df.ffill().where(df.bfill().notnull()))
    mohex.index = (mohex.index - mohex.index[0]).total_seconds(
    ) / 900  #TODO: Generalise this to non-15-min snapshots

    fig = plt.figure()
    gs = plt.GridSpec(4, 3, fig, height_ratios=[20, 1, 20, 1])
    fig.set_size_inches(18, 12)

    # Top row
    cmap = copy.copy(plt.cm.RdBu)
    cmap.set_bad('lightgrey')
    kwargs = dict(cmap=cmap, vmin=0, vmax=1, aspect=1)

    ax = plt.subplot(gs[0, 0])
    ax.imshow(actual, **kwargs)
    ax.set_title('actual')

    ax = plt.subplot(gs[0, 1])
    im = ax.imshow(expected, **kwargs)
    ax.set_title('expected')

    ax = plt.subplot(gs[1, :2])
    plt.colorbar(im, cax=ax, orientation='horizontal')

    # Top right
    ax = plt.subplot(gs[0, 2])
    elos = analysis.elos(run, target=0)
    ax.errorbar(np.arange(len(elos)),
                elos.μ,
                yerr=elos.σ,
                marker='.',
                capsize=2,
                linestyle='')
    ax.set_title('elos v. first')
    ax.grid()

    # Bottom left
    ax = plt.subplot(gs[2, 0])
    im = ax.imshow(actual - expected, vmin=-1, vmax=+1, aspect=1, cmap=cmap)
    ax.set_title('error')

    ax = plt.subplot(gs[3, 0])
    plt.colorbar(im, cax=ax, orientation='horizontal')
    # ax.annotate(f'resid var: {resid_var:.0%}, corr: {corr:.0%}', (.5, -1.2), ha='center', xycoords='axes fraction')

    # Bottom middle
    ax = plt.subplot(gs[2, 1])
    se = (expected * (1 - expected) / games)**.5
    im = ax.imshow((actual - expected) / se,
                   vmin=-3,
                   vmax=+3,
                   aspect=1,
                   cmap='RdBu')
    ax.set_title('standard error')

    ax = plt.subplot(gs[3, 1])
    plt.colorbar(im, cax=ax, orientation='horizontal')
    # ax.annotate(f'resid var: {resid_var:.0%}, corr: {corr:.0%}', (.5, -1.2), ha='center', xycoords='axes fraction')

    # Bottom right
    ax = plt.subplot(gs[2, 2])
    im = mohex.plot(ax=ax, grid=True)
    ax.set_title('elos v. mohex')
    ax.set_xlabel('')
Exemplo n.º 11
0
def plot_mohex(run):
    import matplotlib.pyplot as plt
    import copy

    games, wins = database.symmetric(run)
    games, wins = analysis.mask(games, wins, '.*')
    soln = activelo.solve(games.values, wins.values)

    rates = wins / games

    expected = 1 / (1 + np.exp(-soln.μ[:, None] + soln.μ[None, :]))
    actual = rates.where(games > 0, np.nan).values

    fig = plt.figure()
    gs = plt.GridSpec(4, 3, fig, height_ratios=[20, 1, 20, 1])
    fig.set_size_inches(18, 12)

    # Top row
    cmap = copy.copy(plt.cm.RdBu)
    cmap.set_bad('lightgrey')
    kwargs = dict(cmap=cmap, vmin=0, vmax=1, aspect=1)

    ax = plt.subplot(gs[0, 0])
    ax.imshow(actual, **kwargs)
    ax.set_title('actual')

    ax = plt.subplot(gs[0, 1])
    im = ax.imshow(expected, **kwargs)
    ax.set_title('expected')

    ax = plt.subplot(gs[1, :2])
    plt.colorbar(im, cax=ax, orientation='horizontal')

    # Top right
    std = (soln.σd[0, :]**2).mean()**.5
    ax = plt.subplot(gs[0, 2])
    ax.errorbar(np.arange(len(soln.μ)),
                soln.μd[0, :],
                yerr=soln.σd[0, :],
                marker='.',
                capsize=2,
                linestyle='')
    ax.set_title(f'elos v. first, σ = {std:.2f}')
    ax.grid()

    # Bottom left
    ax = plt.subplot(gs[2, 0])
    im = ax.imshow(actual - expected, vmin=-1, vmax=+1, aspect=1, cmap=cmap)
    ax.set_title('error')

    ax = plt.subplot(gs[3, 0])
    plt.colorbar(im, cax=ax, orientation='horizontal')
    # ax.annotate(f'resid var: {resid_var:.0%}, corr: {corr:.0%}', (.5, -1.2), ha='center', xycoords='axes fraction')

    # Bottom middle
    ax = plt.subplot(gs[2, 1])
    se = (expected * (1 - expected) / games)**.5
    im = ax.imshow((actual - expected) / se,
                   vmin=-3,
                   vmax=+3,
                   aspect=1,
                   cmap='RdBu')
    ax.set_title('standard error')

    ax = plt.subplot(gs[3, 1])
    plt.colorbar(im, cax=ax, orientation='horizontal')

    # Bottom right
    ax = plt.subplot(gs[2, 2])
    im = ax.imshow(games, aspect=1, cmap='Reds')
    ax.set_title('counts')
    ax = plt.subplot(gs[3, 2])
    plt.colorbar(im, cax=ax, orientation='horizontal')