Exemplo n.º 1
0
    def __init__(
        self,
        inplanes,
        planes,
        stride=1,
        downsample=None,
        act_bitwidth=32,
        act_quant=False,
        act_noise=False,
    ):
        super(BasicBlock, self).__init__()
        if isinstance(act_bitwidth, list):
            assert (len(act_bitwidth) == 2)
            self.act_bitwidth = act_bitwidth
        else:
            self.act_bitwidth = [act_bitwidth] * 2
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)

        self.relu1 = actquant.ActQuantBuffers(quant=act_quant,
                                              bitwidth=act_bitwidth[0])
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample

        self.relu2 = actquant.ActQuantBuffers(quant=act_quant,
                                              bitwidth=act_bitwidth[1])
        self.stride = stride
 def __init__(self,
              in_channels,
              out_channels,
              kernel_size,
              stride=1,
              padding=0,
              act_bitwidth=32,
              act_quant=False,
              act_noise=False,
              uniq=True):
     super(DepthwiseSeparableFusedConv2d, self).__init__()
     if act_bitwidth == 32:
         self.components = nn.Sequential(
             Conv2d(in_channels,
                    in_channels,
                    kernel_size,
                    stride=stride,
                    padding=padding,
                    groups=in_channels),
             nn.BatchNorm2d(in_channels),
             # nn.ReLU(inplace=True),
             actquant.ActQuantBuffers(quant=act_quant,
                                      noise=act_noise,
                                      bitwidth=act_bitwidth,
                                      uniq=uniq),
             Conv2d(in_channels, out_channels, 1, bias=False),
             nn.BatchNorm2d(out_channels),
             # nn.ReLU(inplace=True)
             actquant.ActQuantBuffers(quant=act_quant,
                                      noise=act_noise,
                                      bitwidth=act_bitwidth,
                                      uniq=uniq))
     else:
         self.components = nn.Sequential(
             Conv2d(in_channels,
                    in_channels,
                    kernel_size,
                    stride=stride,
                    padding=padding,
                    groups=in_channels), nn.BatchNorm2d(in_channels),
             actquant.ActQuantBuffers(quant=act_quant,
                                      noise=act_noise,
                                      bitwidth=act_bitwidth,
                                      uniq=uniq),
             Conv2d(in_channels, out_channels, 1, bias=False),
             nn.BatchNorm2d(out_channels),
             actquant.ActQuantBuffers(quant=act_quant,
                                      noise=act_noise,
                                      bitwidth=act_bitwidth,
                                      uniq=uniq))
Exemplo n.º 3
0
 def get_feature_activation(self):
     if self.wrpn:
         return actquant.ActQuantWRPN(act_quant=self.act_quant,
                                      act_bitwidth=self.act_bitwidth)
     else:
         return actquant.ActQuantBuffers(quant=self.act_quant,
                                         bitwidth=self.act_bitwidth)
Exemplo n.º 4
0
    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 downsample=None,
                 act_bitwidth=32,
                 act_quant=False):
        super(Bottleneck, self).__init__()
        if isinstance(act_bitwidth, list):
            assert (len(act_bitwidth) == 3)
            self.act_bitwidth = act_bitwidth
        else:
            self.act_bitwidth = [act_bitwidth] * 3

        self.conv1 = Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)

        self.relu1 = actquant.ActQuantBuffers(quant=act_quant,
                                              bitwidth=act_bitwidth[0])
        self.conv2 = Conv2d(planes,
                            planes,
                            kernel_size=3,
                            stride=stride,
                            padding=1,
                            bias=False,
                            groups=32)

        self.bn2 = nn.BatchNorm2d(planes)

        self.relu2 = actquant.ActQuantBuffers(quant=act_quant,
                                              bitwidth=act_bitwidth[1])
        self.conv3 = Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)

        self.relu3 = actquant.ActQuantBuffers(quant=act_quant,
                                              bitwidth=act_bitwidth[2])
        self.downsample = downsample
        self.stride = stride
    def __init__(self,
                 quant_epoch_step,
                 quant_start_stage,
                 alpha=1.0,
                 shallow=False,
                 num_classes=1000,
                 quant=False,
                 noise=False,
                 bitwidth=32,
                 step=2,
                 quant_edges=True,
                 act_bitwidth=32,
                 act_noise=True,
                 step_setup=[15, 9],
                 act_quant=False,
                 uniq=True,
                 normalize=False):
        super(MobileNet, self).__init__(quant_epoch_step=quant_epoch_step,
                                        quant_start_stage=quant_start_stage,
                                        quant=quant,
                                        noise=noise,
                                        bitwidth=bitwidth,
                                        step=step,
                                        quant_edges=quant_edges,
                                        act_noise=act_noise,
                                        step_setup=step_setup,
                                        act_bitwidth=act_bitwidth,
                                        act_quant=act_quant,
                                        uniq=uniq)

        # if act_bitwidth == 32:
        #     act = nn.ReLU(inplace=True)
        # else:
        self.preprocess = lambda x: x
        act = actquant.ActQuantBuffers(quant=act_quant,
                                       noise=act_noise,
                                       bitwidth=act_bitwidth,
                                       uniq=self.uniq)

        layers = [
            Conv2d(3,
                   nearby_int(alpha * 32),
                   kernel_size=3,
                   stride=2,
                   padding=1,
                   bias=False),
            nn.BatchNorm2d(nearby_int(alpha * 32)), act,
            DepthwiseSeparableFusedConv2d(nearby_int(alpha * 32),
                                          nearby_int(alpha * 64),
                                          kernel_size=3,
                                          padding=1,
                                          act_bitwidth=act_bitwidth,
                                          act_quant=act_quant,
                                          act_noise=act_noise,
                                          uniq=uniq),
            DepthwiseSeparableFusedConv2d(nearby_int(alpha * 64),
                                          nearby_int(alpha * 128),
                                          kernel_size=3,
                                          stride=2,
                                          padding=1,
                                          act_bitwidth=act_bitwidth,
                                          act_quant=act_quant,
                                          act_noise=act_noise,
                                          uniq=uniq),
            DepthwiseSeparableFusedConv2d(nearby_int(alpha * 128),
                                          nearby_int(alpha * 128),
                                          kernel_size=3,
                                          padding=1,
                                          act_bitwidth=act_bitwidth,
                                          act_quant=act_quant,
                                          act_noise=act_noise,
                                          uniq=uniq),
            DepthwiseSeparableFusedConv2d(nearby_int(alpha * 128),
                                          nearby_int(alpha * 256),
                                          kernel_size=3,
                                          stride=2,
                                          padding=1,
                                          act_bitwidth=act_bitwidth,
                                          act_quant=act_quant,
                                          act_noise=act_noise,
                                          uniq=uniq),
            DepthwiseSeparableFusedConv2d(nearby_int(alpha * 256),
                                          nearby_int(alpha * 256),
                                          kernel_size=3,
                                          padding=1,
                                          act_bitwidth=act_bitwidth,
                                          act_quant=act_quant,
                                          act_noise=act_noise,
                                          uniq=uniq),
            DepthwiseSeparableFusedConv2d(nearby_int(alpha * 256),
                                          nearby_int(alpha * 512),
                                          kernel_size=3,
                                          stride=2,
                                          padding=1,
                                          act_bitwidth=act_bitwidth,
                                          act_quant=act_quant,
                                          act_noise=act_noise,
                                          uniq=uniq)
        ]
        if not shallow:
            # 5x 512->512 DW-separable convolutions
            layers += [
                DepthwiseSeparableFusedConv2d(nearby_int(alpha * 512),
                                              nearby_int(alpha * 512),
                                              kernel_size=3,
                                              padding=1,
                                              act_bitwidth=act_bitwidth,
                                              act_quant=act_quant,
                                              act_noise=act_noise,
                                              uniq=uniq),
                DepthwiseSeparableFusedConv2d(nearby_int(alpha * 512),
                                              nearby_int(alpha * 512),
                                              kernel_size=3,
                                              padding=1,
                                              act_bitwidth=act_bitwidth,
                                              act_quant=act_quant,
                                              act_noise=act_noise,
                                              uniq=uniq),
                DepthwiseSeparableFusedConv2d(nearby_int(alpha * 512),
                                              nearby_int(alpha * 512),
                                              kernel_size=3,
                                              padding=1,
                                              act_bitwidth=act_bitwidth,
                                              act_quant=act_quant,
                                              act_noise=act_noise,
                                              uniq=uniq),
                DepthwiseSeparableFusedConv2d(nearby_int(alpha * 512),
                                              nearby_int(alpha * 512),
                                              kernel_size=3,
                                              padding=1,
                                              act_bitwidth=act_bitwidth,
                                              act_quant=act_quant,
                                              act_noise=act_noise,
                                              uniq=uniq),
                DepthwiseSeparableFusedConv2d(nearby_int(alpha * 512),
                                              nearby_int(alpha * 512),
                                              kernel_size=3,
                                              padding=1,
                                              act_bitwidth=act_bitwidth,
                                              act_quant=act_quant,
                                              act_noise=act_noise,
                                              uniq=uniq),
            ]
        layers += [
            DepthwiseSeparableFusedConv2d(nearby_int(alpha * 512),
                                          nearby_int(alpha * 1024),
                                          kernel_size=3,
                                          stride=2,
                                          padding=1,
                                          act_bitwidth=act_bitwidth,
                                          act_quant=act_quant,
                                          act_noise=act_noise,
                                          uniq=uniq),
            # Paper specifies stride-2, but unchanged size.
            # Assume its a typo and use stride-1 convolution
            DepthwiseSeparableFusedConv2d(nearby_int(alpha * 1024),
                                          nearby_int(alpha * 1024),
                                          kernel_size=3,
                                          stride=1,
                                          padding=1,
                                          act_bitwidth=act_bitwidth,
                                          act_quant=act_quant,
                                          act_noise=act_noise,
                                          uniq=uniq)
        ]
        self.features = nn.Sequential(*layers)
        self.avg_pool = nn.AvgPool2d(7)
        self.classifier = Linear(nearby_int(alpha * 1024), num_classes)

        self.regime = [
            {
                'epoch': 0,
                'optimizer': 'SGD',
                'lr': 1e-3,
                # 'weight_decay': 5e-4, 'momentum': 0.9},
                'weight_decay': 1e-4,
                'momentum': 0.9
            },
            {
                'epoch': 30,
                'lr': 5e-3
            },
            {
                'epoch': 60,
                'lr': 5e-4,
                'weight_decay': 0
            },
            {
                'epoch': 90,
                'lr': 5e-5
            }
        ]
Exemplo n.º 6
0
    def __init__(self,
                 quant_epoch_step,
                 quant_start_stage,
                 num_classes=10,
                 block=BasicBlock,
                 depth=18,
                 quant=False,
                 noise=False,
                 bitwidth=32,
                 step=2,
                 quant_edges=True,
                 act_noise=True,
                 step_setup=[15, 9],
                 act_bitwidth=32,
                 act_quant=False,
                 layers=[2, 2, 2, 2],
                 normalize=False,
                 noise_mask=0.05):
        super(ResNet_cifar10,
              self).__init__(quant_epoch_step=quant_epoch_step,
                             quant_start_stage=quant_start_stage,
                             quant=quant,
                             noise=noise,
                             bitwidth=bitwidth,
                             step=step,
                             quant_edges=quant_edges,
                             step_setup=step_setup,
                             act_bitwidth=act_bitwidth,
                             act_quant=act_quant,
                             noise_mask=noise_mask)

        self.preprocess = lambda x: x

        self.inplanes = 64
        n = int((depth - 2) / 6)
        self.conv1 = Conv2d(3,
                            64,
                            kernel_size=3,
                            stride=1,
                            padding=1,
                            bias=False)
        self.bn1 = nn.BatchNorm2d(64)

        if isinstance(act_bitwidth, list):
            if self.quant_edges:
                assert (len(act_bitwidth) == depth - 1)
            else:
                assert (len(act_bitwidth) == depth - 2)
            self.act_bitwidth = act_bitwidth
        else:
            if self.quant_edges:
                self.act_bitwidth = [act_bitwidth] * (depth - 1)
            else:
                self.act_bitwidth = [act_bitwidth] * (depth - 2)

        self.relu = actquant.ActQuantBuffers(quant=act_quant,
                                             bitwidth=act_bitwidth)
        self.maxpool = lambda x: x
        self.layer1 = self._make_layer(block,
                                       64,
                                       layers[0],
                                       act_bitwidth=act_bitwidth,
                                       act_quant=act_quant)
        self.layer2 = self._make_layer(block,
                                       128,
                                       layers[1],
                                       stride=2,
                                       act_bitwidth=act_bitwidth,
                                       act_quant=act_quant)
        self.layer3 = self._make_layer(block,
                                       256,
                                       layers[2],
                                       stride=2,
                                       act_bitwidth=act_bitwidth,
                                       act_quant=act_quant)
        self.layer4 = self._make_layer(block,
                                       512,
                                       layers[3],
                                       stride=2,
                                       act_bitwidth=act_bitwidth,
                                       act_quant=act_quant)

        # self.layer4 = lambda x: x
        self.avgpool = nn.AvgPool2d(4)
        self.fc = Linear(512, num_classes)

        init_model(self)
        self.regime = [{
            'epoch': 0,
            'optimizer': 'SGD',
            'lr': 1e-1,
            'weight_decay': 1e-4,
            'momentum': 0.9
        }, {
            'epoch': 81,
            'lr': 1e-2
        }, {
            'epoch': 122,
            'lr': 1e-3,
            'weight_decay': 0
        }, {
            'epoch': 164,
            'lr': 1e-4
        }]
Exemplo n.º 7
0
    def __init__(self,
                 quant_epoch_step,
                 quant_start_stage,
                 num_classes=1000,
                 block=Bottleneck,
                 layers=[3, 4, 23, 3],
                 quant=False,
                 noise=False,
                 bitwidth=32,
                 step=2,
                 quant_edges=True,
                 step_setup=[15, 9],
                 act_bitwidth=32,
                 act_quant=False,
                 uniq=True,
                 normalize=False,
                 noise_mask=0.05):
        super(ResNet_imagenet,
              self).__init__(quant_epoch_step=quant_epoch_step,
                             quant_start_stage=quant_start_stage,
                             quant=quant,
                             noise=noise,
                             bitwidth=bitwidth,
                             step=step,
                             quant_edges=quant_edges,
                             step_setup=step_setup,
                             act_bitwidth=act_bitwidth,
                             act_quant=act_quant,
                             noise_mask=noise_mask)

        self.inplanes = 64
        self.preprocess = lambda x: x

        self.conv1 = Conv2d(3,
                            64,
                            kernel_size=7,
                            stride=2,
                            padding=3,
                            bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        block_size = 2 if block is BasicBlock else 3

        self.relu = actquant.ActQuantBuffers(quant=act_quant,
                                             bitwidth=self.act_bitwidth)

        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        act_nums = [1]
        for i in range(4):
            act_nums.append(act_nums[i] + layers[i] * block_size)
        self.layer1 = self._make_layer(block,
                                       64,
                                       layers[0],
                                       act_bitwidth=self.act_bitwidth,
                                       act_quant=act_quant)
        self.layer2 = self._make_layer(block,
                                       128,
                                       layers[1],
                                       stride=2,
                                       act_bitwidth=self.act_bitwidth,
                                       act_quant=act_quant)
        self.layer3 = self._make_layer(block,
                                       256,
                                       layers[2],
                                       stride=2,
                                       act_bitwidth=self.act_bitwidth,
                                       act_quant=act_quant)
        self.layer4 = self._make_layer(block,
                                       512,
                                       layers[3],
                                       stride=2,
                                       act_bitwidth=self.act_bitwidth,
                                       act_quant=act_quant)
        self.avgpool = nn.AvgPool2d(7)
        self.fc = Linear(512 * block.expansion, num_classes)

        init_model(self)

        self.regime = [{
            'epoch': 0,
            'optimizer': 'SGD',
            'lr': 5e-2,
            'weight_decay': 1e-4,
            'momentum': 0.9
        }, {
            'epoch': 30,
            'lr': 5e-3
        }, {
            'epoch': 60,
            'lr': 5e-4,
            'weight_decay': 0
        }, {
            'epoch': 90,
            'lr': 5e-5
        }]