def get_model(districts, populations, timeseries, seed = 0):
    units = [ModelUnit(
        name       = district, 
        population = populations[i],
        I0  = timeseries.loc[district].iloc[-1]['Hospitalized'] if not timeseries.loc[district].empty and 'Hospitalized' in timeseries.loc[district].iloc[-1] else 0,
        R0  = timeseries.loc[district].iloc[-1]['Recovered']    if not timeseries.loc[district].empty and 'Recovered'    in timeseries.loc[district].iloc[-1] else 0,
        D0  = timeseries.loc[district].iloc[-1]['Deceased']     if not timeseries.loc[district].empty and 'Deceased'     in timeseries.loc[district].iloc[-1] else 0,
    ) for (i, district) in enumerate(districts)]
    return Model(units, random_seed = seed)
Exemplo n.º 2
0
def model(districts, populations, cases, seed) -> Model:
    max_ts = max([ts.index.max() for ts in cases.values()]).isoformat()
    units = [
        ModelUnit(district, populations[i], 
        I0 = cases[district].loc[max_ts].Hospitalized[0] if district in cases.keys() and max_ts in cases[district].index else 0, 
        R0 = cases[district].loc[max_ts].Recovered[0]    if district in cases.keys() and max_ts in cases[district].index else 0, 
        D0 = cases[district].loc[max_ts].Deceased[0]     if district in cases.keys() and max_ts in cases[district].index else 0)
        for (i, district) in enumerate(districts)
    ]
    return Model(units, random_seed=seed)
Exemplo n.º 3
0
def model(districts, populations, cases, migratory_influx, seed) -> Model:
    units = [
        ModelUnit(district, populations[i], 
        I0 = cases[district].iloc[-1].Hospitalized if district in cases.keys() else 0, 
        R0 = cases[district].iloc[-1].Recovered    if district in cases.keys() else 0, 
        D0 = cases[district].iloc[-1].Deceased     if district in cases.keys() else 0)
        for (i, district) in enumerate(districts)
    ]
    if migratory_influx:
        return MigrationSpikeModel(units, introduction_time = 6, migratory_influx = migratory_influx, random_seed=seed)
    else: 
        return Model(units, random_seed=seed)
Exemplo n.º 4
0
def model(districts, populations, cases, seed) -> Model:
    units = [
        ModelUnit(district,
                  populations[i],
                  I0=cases[district].iloc[-1].Hospitalized
                  if district in cases.keys() else 0,
                  R0=cases[district].iloc[-1].Recovered
                  if district in cases.keys() else 0,
                  D0=cases[district].iloc[-1].Deceased
                  if district in cases.keys() else 0)
        for (i, district) in enumerate(districts)
    ]
    return Model(units, random_seed=seed)
Exemplo n.º 5
0
import numpy as np
from scipy.spatial import distance_matrix
import matplotlib.pyplot as plt 

from adaptive.model import Model, ModelUnit
from adaptive.plotting import plot_SIRD

names  = [f"state{i}" for i in ( 1, 2, 3, 4)]
pops   = [k * 1000    for k in (10, 1, 2, 2)]

# inverse distance transmission matrix
centroids = [(0, 0), (1, 0), (0, 1), (2, 0)]
P = distance_matrix(centroids, centroids)
P[P != 0] = P[P != 0] ** -1.0 # we tried inverse square but Zünd et al. suggest inverse
P *= np.array(pops)[:, None]  # weight by destination population
P /= P.sum(axis = 0)          # normalize 

# states 
units = lambda rr0: [ModelUnit(name = name, population = pop, RR0 = rr0) for (name, pop) in zip(names, pops)]

# run and plot 
m1_9 = Model(units(1.9), P, 0).run(200)
plot_SIRD(m1_9, title = "Four-State Toy Model", xlabel="Time", ylabel="S/I/R/D", subtitle="No Adaptive Controls")
plt.show()
Exemplo n.º 6
0
def model(wards, populations, cases, seed) -> Model:
    units = [
        ModelUnit(ward, populations.iloc[i], I0=cases[ward].iloc[-1].cases)
        for (i, ward) in enumerate(wards)
    ]
    return Model(units, random_seed=seed)