Exemplo n.º 1
0
def get_model_nll(params):
    """
    Computes the negative log likelihood of the global data set given the
    parameters of the aDDM.
    Args:
      params: list containing the 3 model parameters, in the following order: d,
          theta, sigma.
    Returns:
      The negative log likelihood for the global data set and the given model.
    """

    d = params[0]
    theta = params[1]
    sigma = params[2]

    logLikelihood = 0
    subjects = choice.keys()
    for subject in subjects:
        trials = choice[subject].keys()
        trialSet = np.random.choice(trials, trialsPerSubject, replace=False)
        for trial in trialSet:
            try:
                likelihood = get_trial_likelihood(
                    choice[subject][trial], valueLeft[subject][trial],
                    valueRight[subject][trial], fixItem[subject][trial],
                    fixTime[subject][trial], d, theta, sigma=sigma)
            except:
                print("An exception occurred during the likelihood computation "
                      "for subject " + subject + ", trial " + str(trial) + ".")
                raise
            if likelihood != 0:
                logLikelihood += np.log(likelihood)
    print("NLL for " + str(params) + ": " + str(-logLikelihood))
    return -logLikelihood
def get_trial_likelihood_wrapper(params):
    """
    Wrapper for addm.get_trial_likelihood() which takes a single argument.
    Intended for parallel computation using a thread pool.
    Args:
      params: tuple consisting of all arguments required by
          addm.get_trial_likelihood().
    Returns:
      The output of addm.get_trial_likelihood().
    """

    return get_trial_likelihood(*params)
Exemplo n.º 3
0
def get_trial_likelihood_wrapper(params):
    """
    Wrapper for addm.get_trial_likelihood() which takes a single argument.
    Intended for parallel computation using a thread pool.
    Args:
      params: tuple consisting of all arguments required by
          addm.get_trial_likelihood().
    Returns:
      The output of addm.get_trial_likelihood().
    """

    return get_trial_likelihood(*params)
def evaluate(individual):
    """
    Computes the negative log likelihood of the global data set given the
    parameters of the aDDM.
    Args:
      individual: list containing the 3 model parameters, in the following
          order: d, theta, sigma.
    Returns:
      A list containing the negative log likelihood for the global data set and
          the given model.
    """

    d = individual[0]
    theta = individual[1]
    sigma = individual[2]

    logLikelihood = 0
    subjects = choice.keys()
    for subject in subjects:
        trials = choice[subject].keys()
        trialSet = np.random.choice(trials, trialsPerSubject, replace=False)
        for trial in trialSet:
            try:
                likelihood = get_trial_likelihood(choice[subject][trial],
                                                  valueLeft[subject][trial],
                                                  valueRight[subject][trial],
                                                  fixItem[subject][trial],
                                                  fixTime[subject][trial],
                                                  d,
                                                  theta,
                                                  sigma=sigma,
                                                  plotResults=False)
            except:
                print(
                    "An exception occurred during the likelihood computation "
                    "for subject " + subject + ", trial " + str(trial) + ".")
                raise
            if likelihood != 0:
                logLikelihood += np.log(likelihood)
    print("NLL for " + str(individual) + ": " + str(-logLikelihood))
    return -logLikelihood,
Exemplo n.º 5
0
def get_model_nll(choice, valueLeft, valueRight, fixItem, fixTime, d, theta,
                  sigma, trialsPerSubject=100, useOddTrials=True,
                  useEvenTrials=True, isCisTrial=None, isTransTrial=None,
                  useCisTrials=True, useTransTrials=True, verbose=True):
    """
    Computes the negative log likelihood of a data set given the parameters of
    the aDDM.
    Args:
      choice: dict of dicts, indexed first by subject then by trial number. Each
          entry is an integer corresponding to the decision made in that trial.
      valueLeft: dict of dicts with same indexing as choice. Each entry is an
          integer corresponding to the value of the left item.
      valueRight: dict of dicts with same indexing as choice. Each entry is an
          integer corresponding to the value of the right item.
      fixItem: dict of dicts with same indexing as choice. Each entry is an
          ordered list of fixated items in the trial.
      fixTime: dict of dicts with same indexing as choice. Each entry is an
          ordered list of fixation durations in the trial.
      d: float, parameter of the model which controls the speed of integration
          of the signal.
      theta: float between 0 and 1, parameter of the model which controls the
          attentional bias.
      sigma: float, parameter of the model, standard deviation for the normal
          distribution.
      trialsPerSubject: integer, number of trials to be used from each subject.
          If smaller than one, all trials will be used.
      useOddTrials: boolean, whether or not to use odd trials in the analysis.
      useEvenTrials: boolean, whether or not to use even trials in the analysis.
      isCisTrial: dict of dicts, indexed first by subject then by trial number.
          Each entry is a boolean indicating if the trial is cis (both bars on
          the same side of the target).
      isTransTrial: dict of dicts with same indexing as isCisTrial. Each entry
          is a boolean indicating if the trial is trans (bars on either side of
          the target).
      useCisTrials: boolean, whether or not to use cis trials  in the analysis.
      useTransTrials: boolean, whether or not to use trans trials in the
          analysis.
      verbose: boolean, whether or not to print updates during computation.
    Returns:
      The negative log likelihood for the given data set and model.
    """

    logLikelihood = 0
    subjects = choice.keys()
    for subject in subjects:
        trials = choice[subject].keys()
        if trialsPerSubject < 1:
            trialsPerSubject = len(trials)

        if useEvenTrials and useOddTrials:
            if useCisTrials and useTransTrials:
                trialSet = np.random.choice(trials, trialsPerSubject,
                                            replace=False)
            elif useCisTrials and not useTransTrials:
                trialSet = np.random.choice(
                    [trial for trial in trials if isCisTrial[subject][trial]],
                    trialsPerSubject, replace=False)
            elif not useCisTrials and useTransTrials:
                trialSet = np.random.choice(
                    [trial for trial in trials if isTransTrial[subject][trial]],
                    trialsPerSubject, replace=False)
            else:
                return 0
        elif useEvenTrials and not useOddTrials:
            if useCisTrials and useTransTrials:
                trialSet = np.random.choice(
                    [trial for trial in trials if not trial % 2],
                    trialsPerSubject, replace=False)
            elif useCisTrials and not useTransTrials:
                trialSet = np.random.choice(
                    [trial for trial in trials if not trial % 2 and
                     isCisTrial[subject][trial]],
                    trialsPerSubject, replace=False)
            elif not useCisTrials and useTransTrials:
                trialSet = np.random.choice(
                    [trial for trial in trials if not trial % 2 and
                     isTransTrial[subject][trial]],
                    trialsPerSubject, replace=False)
            else:
                return 0
        elif not useEvenTrials and useOddTrials:
            if useCisTrials and useTransTrials:
                trialSet = np.random.choice(
                    [trial for trial in trials if trial % 2],
                    trialsPerSubject, replace=False)
            elif useCisTrials and not useTransTrials:
                trialSet = np.random.choice(
                    [trial for trial in trials if trial % 2 and
                     isCisTrial[subject][trial]],
                    trialsPerSubject, replace=False)
            elif not useCisTrials and useTransTrials:
                trialSet = np.random.choice(
                    [trial for trial in trials if trial % 2 and
                     isTransTrial[subject][trial]],
                    trialsPerSubject, replace=False)
            else:
                return 0
        else:
            return 0

        for trial in trialSet:
            try:
                likelihood = get_trial_likelihood(
                    choice[subject][trial], valueLeft[subject][trial],
                    valueRight[subject][trial], fixItem[subject][trial],
                    fixTime[subject][trial], d, theta, sigma=sigma)
            except:
                print("An exception occurred during the likelihood computation "
                      "for subject " + subject + ", trial " + str(trial) + ".")
                raise
            if likelihood != 0:
                logLikelihood += np.log(likelihood)

    if verbose:
        print("NLL for " + str(d) + ", " + str(theta) + ", " + str(sigma) +
              ": " + str(-logLikelihood))
    return -logLikelihood