Exemplo n.º 1
0
def train(epochs):
    print('==> Preparing data..')
    transform_train = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
    ])

    trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=256, shuffle=True,
                                              num_workers=4)
    # Model
    print('==> Building model..')
    best_acc = 0.0
    start_epoch = 0
    net = PreActResNet18().to(device)
    # checkpoint = torch.load(CIFAR_CKPT, map_location=torch.device(device))
    # net.load_state_dict(checkpoint['net'])
    # start_epoch = int(checkpoint['epoch'])
    # best_acc = float(checkpoint['acc'])

    UndercoverAttack = Attack(net, nn.functional.cross_entropy)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(net.parameters(), lr=1e-3, momentum=0.9, weight_decay=5e-4)
    scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=40, gamma=0.1)

    net.train()
    for epoch in range(start_epoch, epochs):
        train_loss = 0
        correct, total = 0, 0
        for batch_idx, (inputs, targets) in enumerate(trainloader):
            inputs, targets = inputs.to(device), targets.to(device)
            optimizer.zero_grad()
            outputs = net(inputs)
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()

            x_adv = undercover_attack(UndercoverAttack, inputs, targets, eps=0.15)
            adv_outputs = net(x_adv)

            loss1 = criterion(outputs, targets)
            loss2 = criterion(adv_outputs, targets)
            loss = loss1 + loss2 * 0.8
            train_loss += loss.item()
            loss.backward()
            optimizer.step()
            scheduler.step(epoch)
        acc = 1.0 * correct / total
        print('epoch: %d, train loss: %.2f, train acc: %.4f' % (epoch, train_loss, acc))
        if acc > best_acc:
            best_acc = acc
            state = {
                'net': net.state_dict(),
                'acc': acc,
                'epoch': epoch,
            }
            if not os.path.isdir('checkpoint'):
                os.mkdir('checkpoint')
            torch.save(state, CIFAR_CKPT)
Exemplo n.º 2
0
ImageId = pd.DataFrame(ImageIds)
ImageId.columns = ['ImageId']
labels = ImageId.merge(labels_init, on='ImageId')

# In[ ]:

EPSILON = 8 / 255 * (1 - -1)
l2dist = PairwiseDistance(2)
criterion_none = nn.CrossEntropyLoss(reduction='none')
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(),
                      lr=0.001,
                      momentum=0.9,
                      weight_decay=5e-4)
# attacks
bim_attack = Attack(net, F.cross_entropy)
cw_attack = cw.L2Adversary(targeted=False,
                           confidence=0.9,
                           search_steps=10,
                           box=(-1, 1),
                           optimizer_lr=0.001)

# In[ ]:


def FGSM(x, y_true, eps=8 / 255, alpha=1 / 255, iteration=10, bim_a=False):
    x = Variable(x.to(device), requires_grad=False)
    y_true = Variable(y_true.to(device), requires_grad=False)

    if iteration == 1:
        x_adv = bim_attack.fgsm(x,
Exemplo n.º 3
0
def train(epochs, eps, device):
    print('==> Preparing data..')
    transform_train = transforms.Compose([
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
    ])

    trainset = torchvision.datasets.MNIST(root='./data',
                                          train=True,
                                          download=True,
                                          transform=transform_train)
    trainloader = torch.utils.data.DataLoader(trainset,
                                              batch_size=256,
                                              shuffle=True,
                                              num_workers=4)
    # Model
    print('==> Building model..')
    net = MnistModel()
    net = net.to(device)
    UndercoverAttack = Attack(net, nn.functional.cross_entropy)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(net.parameters(),
                          lr=1e-3,
                          momentum=0.9,
                          weight_decay=5e-4)

    net.train()
    best_acc = 0.0
    for epoch in range(epochs):
        train_loss = 0
        correct, total = 0, 0
        for batch_idx, (inputs, targets) in enumerate(trainloader):
            inputs, targets = inputs.to(device), targets.to(device)
            optimizer.zero_grad()
            outputs = net(inputs)
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()

            x_adv = undercover_attack(UndercoverAttack,
                                      inputs,
                                      targets,
                                      device,
                                      eps=eps)  #0.15
            adv_outputs = net(x_adv)

            loss1 = criterion(outputs, targets)
            loss2 = criterion(adv_outputs, targets)
            loss = loss1 + loss2 * 0.8
            train_loss += loss.item()
            loss.backward()
            optimizer.step()
        acc = 1.0 * correct / total
        print('epoch: %d, train loss: %.2f, train acc: %.4f' %
              (epoch, train_loss, acc))
        if acc > best_acc:
            best_acc = acc
            state = {
                'net': net.state_dict(),
                'acc': acc,
                'epoch': epoch,
            }
            if not os.path.isdir('checkpoint'):
                os.mkdir('checkpoint')
            torch.save(state, MNIST_CKPT)
Exemplo n.º 4
0
                                          batch_size=512,
                                          shuffle=True,
                                          num_workers=4)
trainiter = iter(trainloader)

testset = torchvision.datasets.MNIST(root='./data',
                                     train=False,
                                     download=True,
                                     transform=transform_test)
testloader = torch.utils.data.DataLoader(testset,
                                         batch_size=512,
                                         shuffle=False,
                                         num_workers=4)
testiter = iter(testloader)

undercover_gradient_attacker = Attack(undercoverNet, F.cross_entropy)

# construct bim adversarial samples
# --------------------train---------------------
normal_samples, adversarial_samples = [], []
for x, y in trainloader:
    x, y = x.to(device), y.to(device)
    y_pred = undercoverNet(x).argmax(dim=1)

    eps = 0.3
    x_adv = undercover_gradient_attacker.i_fgsm(
        x,
        y,
        eps=eps,
        alpha=1 / 255,
        iteration=int(min(eps * 255 + 4, 1.25 * eps * 255)))