Exemplo n.º 1
0
    def test_functions_available(self):
        v = VDF()
        self.assertEqual(v.functions_available(), ['bpr'],
                         'VDF class returning wrong availability')
        self.assertEqual(v.apply_vdf, None, 'VDF is missing term')
        self.assertEqual(v.apply_derivative, None, 'VDF is missing term')

        with self.assertRaises(ValueError):
            v.function = 'Cubic'

        with self.assertRaises(AttributeError):
            v.apply_vdf = isinstance
Exemplo n.º 2
0
    def test_functions_available(self):
        v = VDF()
        self.assertEqual(v.functions_available(), ["bpr", "conical"],
                         "VDF class returning wrong availability")
        self.assertEqual(v.apply_vdf, None, "VDF is missing term")
        self.assertEqual(v.apply_derivative, None, "VDF is missing term")

        with self.assertRaises(ValueError):
            v.function = "Cubic"

        with self.assertRaises(AttributeError):
            v.apply_vdf = isinstance
Exemplo n.º 3
0
 def __init__(self) -> None:
     parameters = Parameters().parameters["assignment"]["equilibrium"]
     self.__dict__["rgap_target"] = parameters["rgap"]
     self.__dict__["max_iter"] = parameters["maximum_iterations"]
     self.__dict__["vdf"] = VDF()
     self.__dict__["classes"] = None  # type: List[TrafficClass]
     self.__dict__["algorithm"] = None  # type: str
     self.__dict__["vdf_parameters"] = None  # type: list
     self.__dict__["time_field"] = None  # type: str
     self.__dict__["capacity_field"] = None  # type: str
     self.__dict__["assignment"] = None  # type: LinearApproximation
     self.__dict__["capacity"] = None  # type: np.ndarray
     self.__dict__["free_flow_tt"] = None  # type: np.ndarray
     self.__dict__["total_flow"] = None  # type: np.ndarray
     self.__dict__["congested_time"] = None  # type: np.ndarray
     self.__dict__["cores"] = None  # type: int
Exemplo n.º 4
0
 def __check_attributes(self, instance, value):
     if instance == "rgap_target":
         if not isinstance(value, float):
             return False, value, "Relative gap needs to be a float"
         if isinstance(self.assignment, LinearApproximation):
             self.assignment.rgap_target = value
     elif instance == "max_iter":
         if not isinstance(value, int):
             return False, value, "Number of iterations needs to be an integer"
         if isinstance(self.assignment, LinearApproximation):
             self.assignment.max_iter = value
     elif instance == "vdf":
         v = value.lower()
         if v not in all_vdf_functions:
             return False, value, f"Volume-delay function {value} is not available"
         value = VDF()
         value.function = v
     elif instance == "classes":
         if isinstance(value, TrafficClass):
             value = [value]
         elif isinstance(value, list):
             for v in value:
                 if not isinstance(v, TrafficClass):
                     return False, value, "Traffic classes need to be proper AssignmentClass objects"
         else:
             raise ValueError("Traffic classes need to be proper AssignmentClass objects")
     elif instance == "vdf_parameters":
         if not self.__validate_parameters(value):
             return False, value, f"Parameter set is not valid: {value} "
     elif instance in ["time_field", "capacity_field"]:
         if not isinstance(value, str):
             return False, value, f"Value for {instance} is not string"
     elif instance == "cores":
         if not isinstance(value, int):
             return False, value, f"Value for {instance} is not integer"
     elif instance == "save_path_files":
         if not isinstance(value, bool):
             return False, value, f"Value for {instance} is not boolean"
     if instance not in self.__dict__:
         return False, value, f"trafficAssignment class does not have property {instance}"
     return True, value, ""
    def __init__(self) -> None:
        parameters = Parameters().parameters["assignment"]["equilibrium"]
        self.__dict__["rgap_target"] = parameters["rgap"]
        self.__dict__["max_iter"] = parameters["maximum_iterations"]
        self.__dict__["vdf"] = VDF()
        self.__dict__["classes"] = []  # type: List[TrafficClass]
        self.__dict__["algorithm"] = None  # type: str
        self.__dict__["vdf_parameters"] = None  # type: list
        self.__dict__["time_field"] = None  # type: str
        self.__dict__["capacity_field"] = None  # type: str
        self.__dict__["assignment"] = None  # type: LinearApproximation
        self.__dict__["capacity"] = None  # type: np.ndarray
        self.__dict__["free_flow_tt"] = None  # type: np.ndarray
        self.__dict__["total_flow"] = None  # type: np.ndarray
        self.__dict__["congested_time"] = None  # type: np.ndarray
        self.__dict__["cores"] = None  # type: int

        self.__dict__["procedure_id"] = uuid4().hex
        self.__dict__["description"] = ""
        self.__dict__["procedure_date"] = str(datetime.today())
        self.__dict__["steps_below_needed_to_terminate"] = 1