Exemplo n.º 1
0
def Madapt_from_AsAc_NPR(AsAc, NPR):
    """
    	Computes Mach number for pressure adapted flow of a nozzle given As/Ac and NPR

		This method checks the NPR to define regime and computes Mach number in jet. The switch between 
		overexpanded jet and underexpanded jet is 
 
		:param AsAc:  ratio of section at exit over throat
        :param NPR:   ratio of total pressure at inlet over 'expected' static pressure at exit
		:return:      result Mach number at exit
 
 		:Example:

		>>> print round(Ms_from_AsAc_NPR(2.636, 1.5), 8) # case with shock in diffuser
		0.32586574

		.. seealso:: 
		.. note:: NOT available for array (numpy) computations
    """
    NPR0, NPRsw, NPR1, Msub, Msh, Msup = _NPR_Ms_list(AsAc)
    if (NPR < NPR0):
        Ms = Is.Mach_PtPs(NPR)
    elif (NPR > NPR1):  # under expanded flow
        Ms = Is.Mach_PtPs(NPR)
    elif (NPR > NPRsw):  # shock wave in jet
        Ms = sw.downstreamMach_Mach_ShockPsratio(Msup, NPR1 / NPR)
    else:
        gmu = defg._gamma - 1.
        K = NPR / AsAc / ((defg._gamma + 1.) / 2)**(
            (defg._gamma + 1.) / 2 / gmu)
        Ms = np.sqrt((np.sqrt(1. + 2. * gmu * K * K) - 1.) / gmu)
    return Ms
Exemplo n.º 2
0
    def set_NPR(self, NPR):
        """ Define Nozzle Pressure Ratio (inlet Ptot over outlet Ps) for this case
		Define Nozzle pressure ratio and compute Mach number, Ptot and Ps according to nozzle regime
        :param NPR: NPR value (>1)

		"""
        self._Pt = np.ones_like(self.AxoAc)
        if NPR < self.NPR0:
            _Ms = Is.Mach_PtPs(NPR, gamma=self.gamma)
            self._M = mf.MachSub_Sigma(self.AxoAc / self.AsoAc *
                                       mf.Sigma_Mach(_Ms),
                                       gamma=self.gamma)
            self._Ps = self._Pt / Is.PtPs_Mach(self._M, gamma=self.gamma)
        else:
            self._M = np.ones_like(self.AxoAc)
            self._M[:self.ithroat + 1] = mf.MachSub_Sigma(
                self.AxoAc[:self.ithroat + 1], gamma=self.gamma)
            self._M[self.ithroat + 1:] = mf.MachSup_Sigma(
                self.AxoAc[self.ithroat + 1:], gamma=self.gamma)
            if NPR < self.NPRsw:
                # analytical solution for Ms, losses and upstream Mach number of shock wave
                Ms = Ms_from_AsAc_NPR(self.AsoAc, NPR)
                Ptloss = Is.PtPs_Mach(Ms) / NPR
                Msh = sw.Mn_Pi_ratio(Ptloss)
                # redefine curves starting from 'ish' index (closest value of Msh in supersonic flow)
                ish = np.abs(self._M - Msh).argmin()
                self._M[ish:] = mf.MachSub_Sigma(
                    self.AxoAc[ish:] * mf.Sigma_Mach(Ms) / self.AsoAc)
                self._Pt[ish:] = Ptloss
            self._Ps = self._Pt / Is.PtPs_Mach(self._M)
Exemplo n.º 3
0
 def update(self):
     gg.base.update(self)
     gh = self.gam_hot
     cph = gh * self.r_hot / (gh - 1.)
     self.Pt9 = np.maximum(self.Pt45 * self.xi_nozzle, self.P0)
     self.M9 = Is.Mach_PtPs(self.Pt9 / self.P0, gamma=self.gam_hot)
     self.V9 = Is.Velocity_MachTi(self.M9,
                                  self.Tt45,
                                  r=self.r_hot,
                                  gamma=self.gam_hot)
Exemplo n.º 4
0
 def stage_9(self):
     if self.current_stage_corps == 5:
         self.Tt9 = self.Tt5
         self.Pt9 = self.Pt5 * self.xi_tuy
         self.P9 = self.P0
         self.M9 = Is.Mach_PtPs(self.Pt9 / self.P9, self.g_fuel.gamma)
         self.V9 = Is.Velocity_MachTi(self.M9, self.Tt9, self.g_fuel.r,
                                      self.g_fuel.gamma)
         self.F_c = self.m_c * (self.V9 - self.V0)
         self.current_stage_corps = 9
Exemplo n.º 5
0
 def stage_19(self):
     if self.current_stage_fan == 13:
         self.Pt19 = self.Pt13 * self.xi_tuy
         self.Tt19 = self.Tt13
         self.P19 = self.P0
         self.M19 = Is.Mach_PtPs(self.Pt19 / self.P19, self.g.gamma)
         self.V19 = Is.Velocity_MachTi(self.M19, self.Tt19, self.g.r,
                                       self.g.gamma)
         self.F_f = self.m_f * (self.V19 - self.V0)
         self.current_stage_fan = 19
Exemplo n.º 6
0
    def compute_from_pt_rtt_p(self, pt, rtt, p):
        """Init state from Ptot r.Ttot and Ps (velocity sign is arbitrary and positive)

		Args:
			pt ([float]): [description]
			rtt ([float]): [description]
			p ([float]): [description]
		"""
        M = Is.Mach_PtPs(pt / p, self._gamma)
        rts = rtt / Is.TtTs_Mach(M, self._gamma)
        self.__init__(rho=p / rts, u=M * np.sqrt(self._gamma * rts), p=p)
Exemplo n.º 7
0
 def update(self):
     tj.turbojet_opt.update(self)
     gh  = self.gam_hot
     cph = gh*self.r_hot/(gh-1.)
     Wsp_mono = (1.-(self.Pt45/self.P0*self.xi_nozzle)**(-(gh-1.)*self.etapolTBP/gh))*self.Tt45*cph*(1.+self.far)
     self.Tt5  = self.Tt45 - Wsp_mono*self.fanpower_ratio/cph/(1.+self.far)
     self.Pt5  = self.Pt45*(self.Tt5/self.Tt45)**(gh/((gh-1.)*self.etapolTBP))
     # core nozzle
     self.Pt9 = self.Pt5 * self.xi_nozzle
     self.M9  = Is.Mach_PtPs(self.Pt9/self.P0, gamma=self.gam_hot)
     self.V9  = Is.Velocity_MachTi(self.M9, self.Tt5, r=self.r_hot, gamma=self.gam_hot)
     # fan
     gc  = self.gam_cold
     cpc = gc*self.r_cold/(gc-1.)
     #print self.bpr, cpc
     self.Tt17 = self.Tt2 + self.eta_shaft*Wsp_mono*self.fanpower_ratio/(self.bpr*cpc)
     self.Pt17 = self.Pt2*(self.Tt17/self.Tt2)**((gc*self.etapolfan)/(gc-1.))
     # bypass nozzle    
     self.Tt19 = self.Tt17
     self.Pt19 = self.Pt17*self.xi_nozzle
     self.M19  = Is.Mach_PtPs(self.Pt19/self.P0, gamma=gc)
     self.V19  = Is.Velocity_MachTi(self.M19, self.Tt19, r=self.r_cold, gamma=gc)
Exemplo n.º 8
0
def deflection_Mach_IsentropicPsratio(Mach, Pratio, gamma=defg._gamma):
    m2 = Is.Mach_PtPs(Is.PtPs_Mach(Mach, gamma) / Pratio, gamma)
    return -PrandtlMeyer_Mach(Mach, gamma) + PrandtlMeyer_Mach(m2, gamma)
Exemplo n.º 9
0
def test_stagnation_i2t():
    assert Is.TtTs_Mach(2.) == Is.TiTs_Mach(2.)
    assert Is.PtPs_Mach(2.) == Is.PiPs_Mach(2.)
    assert Is.Mach_PiPs(3.) == Is.Mach_PtPs(3.)
    assert Is.Mach_TiTs(3.) == Is.Mach_TtTs(3.)
    assert Is.Velocity_MachTi(.8, 300.) == Is.Velocity_MachTt(.8, 300.)