Exemplo n.º 1
0
    fuel = 56*6.01*0.4535*g
    initial_weight = 1111*g
    final_weight = initial_weight-fuel
    x = np.linspace(final_weight, initial_weight, 100)
    y = []
    for x_i in x:
        y.append(to_integrate(x_i)[0])
    range = scipy.integrate.simps(y, x)
    return range


# ==============================================================================
# Inputs
# ==============================================================================
altitude = 10000  # ft
air_props = air_properties(altitude, unit='feet')
density = air_props['Density']

# data = pandas.read_csv('performance_grid.csv')
# psi_spars = [0.1, 0.3, 0.6, 0.8]
# c_P = 1.0

# ranges = []

# for i in range(len(data.values)):
# AC = data.values[i,0:4]
# velocity = data.values[i,-4]
# AOA = data.values[i,-5]
# cl= data.values[i,-3]
# cd = data.values[i,-2]
# CL, CD = coefficient_LLT(AC, velocity, AOA)
Exemplo n.º 2
0
def aerodynamic_performance(AC, psi_spars, Au_P, Al_P, c_P, deltaz, alpha, H,
                            V):
    morphing_direction = 'forwards'

    air_data = air_properties(H, unit='feet')
    density = air_data['Density']
    dyn_pressure = .5 * density * V**2

    # Generate dependent shape coefficients
    # try:
    Au_C, Al_C, c_C, spar_thicknesses = calculate_dependent_shape_coefficients(
        AC, psi_spars, Au_P, Al_P, deltaz, c_P, morphing=morphing_direction)

    # print 'Reynolds: ', Reynolds(H, V, c_C)
    # Generate aifoil file
    airfoil = 'test'
    x = create_x(1., distribution='linear', n=300)
    y = CST(x, 1., [deltaz / 2., deltaz / 2.], Au=Au_C, Al=Al_C)

    # Get strain data
    strains, av_strain = calculate_strains(Au_P, Al_P, c_P, Au_C, Al_C, c_C,
                                           deltaz, psi_spars, spar_thicknesses)

    intersections = intersect_curves(x, y['l'], x, y['u'])
    print(intersections, intersections[0][1:])
    if len(intersections[0][1:]) == 0:
        # print y
        create_input(x, y['u'], y['l'], airfoil, different_x_upper_lower=False)

        # Get aerodynamic data
        print(airfoil, alpha, Reynolds(H, V, c_C))
        Data = find_coefficients(airfoil,
                                 alpha,
                                 Reynolds=Reynolds(H, V, c_C),
                                 iteration=200,
                                 NACA=False,
                                 delete=True,
                                 PANE=True,
                                 GDES=True)

        # plot_airfoil(AC, psi_spars, c_P, deltaz, Au_P, Al_P, image = 'save', iteration=counter, dir = airfoil+'_dir')

        # filtering data (for now I only care about negative strains
        str_output = {
            'CL': Data['CL'],
            'CD': Data['CD'],
            'CM': Data['CM'],
            'av_strain': av_strain,
            'Au_C': Au_C,
            'Al_C': Al_C,
            'spars': psi_spars
        }

        if Data['CM'] == None:
            str_output['lift'] = None
            str_output['drag'] = None
            str_output['moment'] = None
        else:
            str_output['lift'] = Data['CL'] / dyn_pressure / c_C,
            str_output['drag'] = Data['CD'] / dyn_pressure / c_C,
            str_output['moment'] = Data['CM'] / dyn_pressure / c_C
        for i in range(len(strains)):
            str_output['strain_' + str(i)] = strains[i]

        # Writing to a text file
        # f_worker = open(str(airfoil) + '.txt', 'wb')
        # for i in range(len(key_list)):
        # if i != len(key_list)-1:
        # if key_list[i][:1] == 'Au':
        # f_worker.write('%f\t' % str_output[key_list[i][:1]+'_C'][int(key_list[i][-1])])
        # else:
        # else:
        # if key_list[i][:1] == 'Au':
        # f_worker.write('%f\n' % str_output[key_list[i][:1]+'_C'][int(key_list[i][-1])])
    else:
        str_output = {
            'CL': 1000,
            'CD': None,
            'CM': None,
            'av_strain': av_strain,
            'spars': psi_spars,
            'Au_C': Au_C,
            'Al_C': Al_C,
            'lift': None,
            'drag': None,
            'moment': None
        }
        for i in range(len(strains)):
            str_output['strain_' + str(i)] = strains[i]
    # except:
    # str_output = {'CL':None, 'CD':None, 'CM':None, 'av_strain':None,
    # 'Au_C':[None]*len(AC), 'Al_C': [None]*len(AC),
    # 'lift': None, 'drag': None, 'moment':None,
    # 'strains':[None]*(len(AC)-1), 'spars':psi_spars}
    return str_output