def test_neibs(self):
        for shape, pshape in [
            ((10, 7, 18, 18), (2, 2)),
            ((10, 7, 6, 18), (3, 2)),
            ((5, 7, 66, 66), (33, 33)),
            ((5, 7, 68, 66), (34, 33)),
        ]:
            for border in ["valid", "ignore_borders"]:
                for dtype in self.dtypes:
                    images = shared(
                        np.arange(np.prod(shape), dtype=dtype).reshape(shape))
                    neib_shape = tt.as_tensor_variable(pshape)

                    f = function(
                        [],
                        images2neibs(images, neib_shape, mode=border),
                        mode=self.mode,
                    )

                    # print images.get_value(borrow=True)
                    neibs = f()
                    # print neibs
                    g = function(
                        [],
                        neibs2images(neibs, neib_shape, images.shape),
                        mode=self.mode,
                    )
                    assert any([
                        isinstance(node.op, self.op)
                        for node in f.maker.fgraph.toposort()
                    ])

                    # print g()
                    assert np.allclose(images.get_value(borrow=True), g())
    def test_neibs_full_with_inconsistent_borders(self):
        shape = (2, 3, 5, 5)
        images = tt.dtensor4()
        images_val = np.arange(np.prod(shape), dtype="float32").reshape(shape)

        f = aesara.function([images],
                            tt.sqr(images2neibs(images, (2, 2), mode="full")),
                            mode=self.mode)
        with pytest.raises(TypeError):
            f(images_val)
    def speed_neibs(self):
        shape = (100, 40, 18, 18)
        images = shared(
            np.arange(np.prod(shape), dtype="float32").reshape(shape))
        neib_shape = tt.as_tensor_variable((3, 3))

        f = function([], images2neibs(images, neib_shape), mode=self.mode)

        for i in range(1000):
            f()
Exemplo n.º 4
0
 def test_neibs_half_step_by_valid(self):
     neib_shapes = ((3, 3), (3, 5), (5, 3))
     for shp_idx, (shape, neib_step) in enumerate([
         [(7, 8, 5, 5), (1, 1)],
         [(7, 8, 5, 5), (2, 2)],
         [(7, 8, 5, 5), (4, 4)],
         [(7, 8, 5, 5), (1, 4)],
         [(7, 8, 5, 5), (4, 1)],
         [(80, 90, 5, 5), (1, 2)],
         [(1025, 9, 5, 5), (2, 1)],
         [(1, 1, 5, 1037), (2, 4)],
         [(1, 1, 1045, 5), (4, 2)],
     ]):
         for neib_shape in neib_shapes:
             for dtype in self.dtypes:
                 x = aesara.shared(
                     np.random.standard_normal(shape).astype(dtype))
                 extra = (neib_shape[0] // 2, neib_shape[1] // 2)
                 padded_shape = (
                     x.shape[0],
                     x.shape[1],
                     x.shape[2] + 2 * extra[0],
                     x.shape[3] + 2 * extra[1],
                 )
                 padded_x = at.zeros(padded_shape)
                 padded_x = at.set_subtensor(
                     padded_x[:, :, extra[0]:-extra[0], extra[1]:-extra[1]],
                     x)
                 x_using_valid = images2neibs(padded_x,
                                              neib_shape,
                                              neib_step,
                                              mode="valid")
                 x_using_half = images2neibs(x,
                                             neib_shape,
                                             neib_step,
                                             mode="half")
                 f_valid = aesara.function([],
                                           x_using_valid,
                                           mode="FAST_RUN")
                 f_half = aesara.function([], x_using_half, mode=self.mode)
                 unittest_tools.assert_allclose(f_valid(), f_half())
    def test_neibs_manual(self):
        shape = (2, 3, 4, 4)
        for dtype in self.dtypes:
            images = shared(
                np.arange(np.prod(shape), dtype=dtype).reshape(shape))
            neib_shape = tt.as_tensor_variable((2, 2))

            for border in ["valid", "ignore_borders"]:
                f = function([],
                             images2neibs(images, neib_shape, mode=border),
                             mode=self.mode)
                assert any([
                    isinstance(node.op, self.op)
                    for node in f.maker.fgraph.toposort()
                ])

                # print images.get_value(borrow=True)
                neibs = f()
                # print neibs
                assert np.allclose(
                    neibs,
                    [
                        [0, 1, 4, 5],
                        [2, 3, 6, 7],
                        [8, 9, 12, 13],
                        [10, 11, 14, 15],
                        [16, 17, 20, 21],
                        [18, 19, 22, 23],
                        [24, 25, 28, 29],
                        [26, 27, 30, 31],
                        [32, 33, 36, 37],
                        [34, 35, 38, 39],
                        [40, 41, 44, 45],
                        [42, 43, 46, 47],
                        [48, 49, 52, 53],
                        [50, 51, 54, 55],
                        [56, 57, 60, 61],
                        [58, 59, 62, 63],
                        [64, 65, 68, 69],
                        [66, 67, 70, 71],
                        [72, 73, 76, 77],
                        [74, 75, 78, 79],
                        [80, 81, 84, 85],
                        [82, 83, 86, 87],
                        [88, 89, 92, 93],
                        [90, 91, 94, 95],
                    ],
                )
                g = function([],
                             neibs2images(neibs, neib_shape, images.shape),
                             mode=self.mode)

                assert np.allclose(images.get_value(borrow=True), g())
Exemplo n.º 6
0
 def test_neibs_full_step_by_valid(self):
     for shp_idx, (shape, neib_step, neib_shapes) in enumerate([
         [(7, 8, 5, 5), (1, 1), ((3, 3), (3, 5), (5, 3))],
         [(7, 8, 5, 5), (2, 2), ((3, 3), (3, 5), (5, 3))],
         [(7, 8, 6, 6), (3, 3), ((2, 2), (2, 5), (5, 2))],
         [(7, 8, 6, 6), (1, 3), ((2, 2), (2, 5), (5, 2))],
         [(7, 8, 6, 6), (3, 1), ((2, 2), (2, 5), (5, 2))],
         [(80, 90, 5, 5), (1, 2), ((3, 3), (3, 5), (5, 3))],
         [(1025, 9, 5, 5), (2, 1), ((3, 3), (3, 5), (5, 3))],
         [(1, 1, 11, 1037), (2, 3), ((3, 3), (5, 3))],
         [(1, 1, 1043, 11), (3, 2), ((3, 3), (3, 5))],
     ]):
         for neib_shape in neib_shapes:
             for dtype in self.dtypes:
                 x = aesara.shared(
                     np.random.standard_normal(shape).astype(dtype))
                 extra = (neib_shape[0] - 1, neib_shape[1] - 1)
                 padded_shape = (
                     x.shape[0],
                     x.shape[1],
                     x.shape[2] + 2 * extra[0],
                     x.shape[3] + 2 * extra[1],
                 )
                 padded_x = at.zeros(padded_shape)
                 padded_x = at.set_subtensor(
                     padded_x[:, :, extra[0]:-extra[0], extra[1]:-extra[1]],
                     x)
                 x_using_valid = images2neibs(padded_x,
                                              neib_shape,
                                              neib_step,
                                              mode="valid")
                 x_using_full = images2neibs(x,
                                             neib_shape,
                                             neib_step,
                                             mode="full")
                 f_valid = aesara.function([],
                                           x_using_valid,
                                           mode="FAST_RUN")
                 f_full = aesara.function([], x_using_full, mode=self.mode)
                 unittest_tools.assert_allclose(f_valid(), f_full())
    def test_neibs_bad_shape_wrap_centered(self):
        shape = (2, 3, 10, 10)

        for dtype in self.dtypes:
            images = shared(
                np.arange(np.prod(shape), dtype=dtype).reshape(shape))

            for neib_shape in [(3, 2), (2, 3)]:
                neib_shape = tt.as_tensor_variable(neib_shape)

                f = function(
                    [],
                    images2neibs(images, neib_shape, mode="wrap_centered"),
                    mode=self.mode,
                )
                with pytest.raises(TypeError):
                    f()

            for shape in [(2, 3, 2, 3), (2, 3, 3, 2)]:
                images = shared(np.arange(np.prod(shape)).reshape(shape))
                neib_shape = tt.as_tensor_variable((3, 3))
                f = function(
                    [],
                    images2neibs(images, neib_shape, mode="wrap_centered"),
                    mode=self.mode,
                )
                with pytest.raises(TypeError):
                    f()

            # Test a valid shapes
            shape = (2, 3, 3, 3)
            images = shared(np.arange(np.prod(shape)).reshape(shape))
            neib_shape = tt.as_tensor_variable((3, 3))

            f = function(
                [],
                images2neibs(images, neib_shape, mode="wrap_centered"),
                mode=self.mode,
            )
            f()
    def test_neibs_manual_step(self):
        shape = (2, 3, 5, 5)
        for dtype in self.dtypes:
            images = shared(
                np.asarray(np.arange(np.prod(shape)).reshape(shape),
                           dtype=dtype))
            neib_shape = tt.as_tensor_variable((3, 3))
            neib_step = tt.as_tensor_variable((2, 2))
            for border in ["valid", "ignore_borders"]:
                f = function(
                    [],
                    images2neibs(images, neib_shape, neib_step, mode=border),
                    mode=self.mode,
                )

                neibs = f()
                assert self.op in [
                    type(node.op) for node in f.maker.fgraph.toposort()
                ]

                assert np.allclose(
                    neibs,
                    [
                        [0, 1, 2, 5, 6, 7, 10, 11, 12],
                        [2, 3, 4, 7, 8, 9, 12, 13, 14],
                        [10, 11, 12, 15, 16, 17, 20, 21, 22],
                        [12, 13, 14, 17, 18, 19, 22, 23, 24],
                        [25, 26, 27, 30, 31, 32, 35, 36, 37],
                        [27, 28, 29, 32, 33, 34, 37, 38, 39],
                        [35, 36, 37, 40, 41, 42, 45, 46, 47],
                        [37, 38, 39, 42, 43, 44, 47, 48, 49],
                        [50, 51, 52, 55, 56, 57, 60, 61, 62],
                        [52, 53, 54, 57, 58, 59, 62, 63, 64],
                        [60, 61, 62, 65, 66, 67, 70, 71, 72],
                        [62, 63, 64, 67, 68, 69, 72, 73, 74],
                        [75, 76, 77, 80, 81, 82, 85, 86, 87],
                        [77, 78, 79, 82, 83, 84, 87, 88, 89],
                        [85, 86, 87, 90, 91, 92, 95, 96, 97],
                        [87, 88, 89, 92, 93, 94, 97, 98, 99],
                        [100, 101, 102, 105, 106, 107, 110, 111, 112],
                        [102, 103, 104, 107, 108, 109, 112, 113, 114],
                        [110, 111, 112, 115, 116, 117, 120, 121, 122],
                        [112, 113, 114, 117, 118, 119, 122, 123, 124],
                        [125, 126, 127, 130, 131, 132, 135, 136, 137],
                        [127, 128, 129, 132, 133, 134, 137, 138, 139],
                        [135, 136, 137, 140, 141, 142, 145, 146, 147],
                        [137, 138, 139, 142, 143, 144, 147, 148, 149],
                    ],
                )
    def test_neibs_bad_shape(self):
        shape = (2, 3, 10, 10)
        for dtype in self.dtypes:
            images = shared(
                np.arange(np.prod(shape), dtype=dtype).reshape(shape))

            for neib_shape in [(3, 2), (2, 3)]:
                neib_shape = tt.as_tensor_variable(neib_shape)
                f = function([],
                             images2neibs(images, neib_shape),
                             mode=self.mode)
                with pytest.raises(TypeError):
                    f()

                # Test that ignore border work in that case.
                f = function(
                    [],
                    images2neibs(images, neib_shape, mode="ignore_borders"),
                    mode=self.mode,
                )
                assert self.op in [
                    type(node.op) for node in f.maker.fgraph.toposort()
                ]
                f()
Exemplo n.º 10
0
 def fn(images):
     return images2neibs(images, (2, 2), mode="ignore_borders")
Exemplo n.º 11
0
 def fn(images):
     return images2neibs(images, (1, 2), (5, 2))
Exemplo n.º 12
0
 def fn(images):
     return images2neibs(images, (2, 2))
Exemplo n.º 13
0
 def fn(images):
     return images2neibs(images, (3, 3), mode="full")
Exemplo n.º 14
0
 def fn(images):
     return images2neibs(images, (3, 3), mode="wrap_centered")
Exemplo n.º 15
0
    def test_neibs_wrap_centered_step_manual(self):

        expected1 = [
            [24, 20, 21, 4, 0, 1, 9, 5, 6],
            [21, 22, 23, 1, 2, 3, 6, 7, 8],
            [23, 24, 20, 3, 4, 0, 8, 9, 5],
            [9, 5, 6, 14, 10, 11, 19, 15, 16],
            [6, 7, 8, 11, 12, 13, 16, 17, 18],
            [8, 9, 5, 13, 14, 10, 18, 19, 15],
            [19, 15, 16, 24, 20, 21, 4, 0, 1],
            [16, 17, 18, 21, 22, 23, 1, 2, 3],
            [18, 19, 15, 23, 24, 20, 3, 4, 0],
        ]
        expected2 = [
            [24, 20, 21, 4, 0, 1, 9, 5, 6],
            [22, 23, 24, 2, 3, 4, 7, 8, 9],
            [14, 10, 11, 19, 15, 16, 24, 20, 21],
            [12, 13, 14, 17, 18, 19, 22, 23, 24],
        ]
        expected3 = [
            [19, 15, 16, 24, 20, 21, 4, 0, 1, 9, 5, 6, 14, 10, 11],
            [17, 18, 19, 22, 23, 24, 2, 3, 4, 7, 8, 9, 12, 13, 14],
            [9, 5, 6, 14, 10, 11, 19, 15, 16, 24, 20, 21, 4, 0, 1],
            [7, 8, 9, 12, 13, 14, 17, 18, 19, 22, 23, 24, 2, 3, 4],
        ]
        expected4 = [
            [23, 24, 20, 21, 22, 3, 4, 0, 1, 2, 8, 9, 5, 6, 7],
            [21, 22, 23, 24, 20, 1, 2, 3, 4, 0, 6, 7, 8, 9, 5],
            [13, 14, 10, 11, 12, 18, 19, 15, 16, 17, 23, 24, 20, 21, 22],
            [11, 12, 13, 14, 10, 16, 17, 18, 19, 15, 21, 22, 23, 24, 20],
        ]
        expected5 = [
            [24, 20, 21, 4, 0, 1, 9, 5, 6],
            [22, 23, 24, 2, 3, 4, 7, 8, 9],
            [9, 5, 6, 14, 10, 11, 19, 15, 16],
            [7, 8, 9, 12, 13, 14, 17, 18, 19],
            [19, 15, 16, 24, 20, 21, 4, 0, 1],
            [17, 18, 19, 22, 23, 24, 2, 3, 4],
        ]
        expected6 = [
            [24, 20, 21, 4, 0, 1, 9, 5, 6],
            [21, 22, 23, 1, 2, 3, 6, 7, 8],
            [23, 24, 20, 3, 4, 0, 8, 9, 5],
            [14, 10, 11, 19, 15, 16, 24, 20, 21],
            [11, 12, 13, 16, 17, 18, 21, 22, 23],
            [13, 14, 10, 18, 19, 15, 23, 24, 20],
        ]

        # TODO test discontinous image

        for shp_idx, (shape, neib_shape, neib_step, expected) in enumerate([
            [(7, 8, 5, 5), (3, 3), (2, 2), expected1],
            [(7, 8, 5, 5), (3, 3), (3, 3), expected2],
            [(7, 8, 5, 5), (5, 3), (3, 3), expected3],
            [(7, 8, 5, 5), (3, 5), (3, 3), expected4],
            [(80, 90, 5, 5), (3, 3), (2, 3), expected5],
            [(1025, 9, 5, 5), (3, 3), (3, 2), expected6],
            [(1, 1, 5, 1035), (3, 3), (3, 3), None],
            [(1, 1, 1045, 5), (3, 3), (3, 3), None],
        ]):

            for dtype in self.dtypes:

                images = shared(
                    np.asarray(np.arange(np.prod(shape)).reshape(shape),
                               dtype=dtype))
                neib_shape = tt.as_tensor_variable(neib_shape)
                neib_step = tt.as_tensor_variable(neib_step)
                expected = np.asarray(expected)

                f = function(
                    [],
                    images2neibs(images,
                                 neib_shape,
                                 neib_step,
                                 mode="wrap_centered"),
                    mode=self.mode,
                )
                neibs = f()

                if expected.size > 1:
                    for i in range(shape[0] * shape[1]):
                        assert np.allclose(
                            neibs[i * expected.shape[0]:(i + 1) *
                                  expected.shape[0], :],
                            expected + 25 * i,
                        ), "wrap_centered"

                assert self.op in [
                    type(node.op) for node in f.maker.fgraph.toposort()
                ]
Exemplo n.º 16
0
    def test_infer_shape(self):
        shape = (100, 40, 6, 3)
        images = np.ones(shape).astype("float32")
        x = tt.ftensor4()
        self._compile_and_check(
            [x],
            [images2neibs(x, neib_shape=(2, 1), mode="valid")],
            [images],
            Images2Neibs,
        )
        self._compile_and_check(
            [x],
            [images2neibs(x, neib_shape=(2, 3), mode="valid")],
            [images],
            Images2Neibs,
        )
        shape = (100, 40, 5, 4)
        images = np.ones(shape).astype("float32")
        x = tt.ftensor4()
        self._compile_and_check(
            [x],
            [images2neibs(x, neib_shape=(2, 1), mode="ignore_borders")],
            [images],
            Images2Neibs,
        )
        shape = (100, 40, 5, 3)
        images = np.ones(shape).astype("float32")
        x = tt.ftensor4()
        self._compile_and_check(
            [x],
            [images2neibs(x, neib_shape=(2, 3), mode="ignore_borders")],
            [images],
            Images2Neibs,
        )

        shape = (100, 40, 6, 7)
        images = np.ones(shape).astype("float32")
        x = tt.ftensor4()
        self._compile_and_check(
            [x],
            [images2neibs(x, neib_shape=(2, 2), mode="ignore_borders")],
            [images],
            Images2Neibs,
        )
        shape = (100, 40, 5, 10)
        images = np.ones(shape).astype("float32")
        x = tt.ftensor4()
        self._compile_and_check(
            [x],
            [images2neibs(x, neib_shape=(3, 3), mode="wrap_centered")],
            [images],
            Images2Neibs,
        )
        shape = (100, 40, 6, 4)
        images = np.ones(shape).astype("float32")
        x = tt.ftensor4()
        self._compile_and_check(
            [x],
            [images2neibs(x, neib_shape=(2, 1), mode="half")],
            [images],
            Images2Neibs,
        )
        self._compile_and_check(
            [x],
            [images2neibs(x, neib_shape=(2, 3), mode="half")],
            [images],
            Images2Neibs,
        )
        shape = (100, 40, 6, 5)
        images = np.ones(shape).astype("float32")
        x = tt.ftensor4()
        self._compile_and_check(
            [x],
            [images2neibs(x, neib_shape=(2, 1), mode="full")],
            [images],
            Images2Neibs,
        )
        self._compile_and_check(
            [x],
            [images2neibs(x, neib_shape=(2, 3), mode="full")],
            [images],
            Images2Neibs,
        )
Exemplo n.º 17
0
 def fn(images):
     return images2neibs(images, (3, 3), mode="half")