Exemplo n.º 1
0
 def test4(self):
     a = dmatrix()
     axis = scalar()
     l = sort(a, axis, "mergesort")
     f = aesara.function([a, axis], l)
     for axis_val in 0, 1:
         gv = f(self.m_val, axis_val)
         gt = np.sort(self.m_val, axis_val)
         utt.assert_allclose(gv, gt)
Exemplo n.º 2
0
def test_empty_givens_updates():
    # Regression test for bug fixed in 8625e03.

    # Empty givens / updates dictionaries were not properly detected before,
    # triggering useless crashes at compile time.
    x = scalar()
    y = x * 2
    function([In(x)], y, givens={})
    function([In(x)], y, updates={})
Exemplo n.º 3
0
def test_VMLinker_make_vm_cvm():
    # We don't want this at module level, since CXX might not be present
    from aesara.link.c.cvm import CVM

    a = scalar()
    linker = VMLinker(allow_gc=False, use_cloop=True)

    f = function([a], a, mode=Mode(optimizer=None, linker=linker))
    assert isinstance(f.vm, CVM)
Exemplo n.º 4
0
    def check_partial_function(linker_name):
        x = scalar("input")
        y = x**2
        f = function([x], [y + 7, y - 9, y / 14.0],
                     mode=Mode(optimizer=None, linker=linker_name))

        assert f(3, output_subset=[0, 1, 2]) == f(3)
        assert f(4, output_subset=[0, 2]) == [f(4)[0], f(4)[2]]
        utt.assert_allclose(f(5), np.array([32.0, 16.0, 1.7857142857142858]))
Exemplo n.º 5
0
    def test_repeatOp(self):
        for ndim in [1, 3]:
            x = TensorType(config.floatX, [False] * ndim)()
            a = np.random.random((10, ) * ndim).astype(config.floatX)

            for axis in self._possible_axis(ndim):
                for dtype in integer_dtypes:
                    r_var = scalar(dtype=dtype)
                    r = np.asarray(3, dtype=dtype)
                    if dtype == "uint64" or (dtype
                                             in self.numpy_unsupported_dtypes
                                             and r_var.ndim == 1):
                        with pytest.raises(TypeError):
                            repeat(x, r_var, axis=axis)
                    else:
                        f = aesara.function([x, r_var],
                                            repeat(x, r_var, axis=axis))
                        assert np.allclose(np.repeat(a, r, axis=axis), f(a, r))

                        r_var = vector(dtype=dtype)
                        if axis is None:
                            r = np.random.randint(1, 6,
                                                  size=a.size).astype(dtype)
                        else:
                            r = np.random.randint(1, 6,
                                                  size=(10, )).astype(dtype)

                        if dtype in self.numpy_unsupported_dtypes and r_var.ndim == 1:
                            with pytest.raises(TypeError):
                                repeat(x, r_var, axis=axis)
                        else:
                            f = aesara.function([x, r_var],
                                                repeat(x, r_var, axis=axis))
                            assert np.allclose(np.repeat(a, r, axis=axis),
                                               f(a, r))

                        # check when r is a list of single integer, e.g. [3].
                        r = np.random.randint(1, 11, size=()).astype(dtype) + 2
                        f = aesara.function([x], repeat(x, [r], axis=axis))
                        assert np.allclose(np.repeat(a, r, axis=axis), f(a))
                        assert not np.any([
                            isinstance(n.op, RepeatOp)
                            for n in f.maker.fgraph.toposort()
                        ])

                        # check when r is  aesara tensortype that broadcastable is (True,)
                        r_var = TensorType(broadcastable=(True, ),
                                           dtype=dtype)()
                        r = np.random.randint(1, 6, size=(1, )).astype(dtype)
                        f = aesara.function([x, r_var],
                                            repeat(x, r_var, axis=axis))
                        assert np.allclose(np.repeat(a, r[0], axis=axis),
                                           f(a, r))
                        assert not np.any([
                            isinstance(n.op, RepeatOp)
                            for n in f.maker.fgraph.toposort()
                        ])
Exemplo n.º 6
0
 def test2(self):
     a = dmatrix()
     axis = scalar()
     w = sort(a, axis)
     f = aesara.function([a, axis], w)
     for axis_val in 0, 1:
         gv = f(self.m_val, axis_val)
         gt = np.sort(self.m_val, axis_val)
         utt.assert_allclose(gv, gt)
Exemplo n.º 7
0
def test_VM_exception():
    class SomeVM(VM):
        def __call__(self):
            pass

    a = scalar()
    fg = FunctionGraph(outputs=[SomeOp()(a)])

    with pytest.raises(ValueError, match="`nodes` and `thunks`.*"):
        SomeVM(fg, fg.apply_nodes, [], [])
Exemplo n.º 8
0
def test_fgraph_to_python_names():
    import inspect

    x = scalar("1x")
    y = scalar("_")
    z = scalar()
    q = scalar("def")
    r = NoneConst

    out_fg = FunctionGraph([x, y, z, q, r], [x, y, z, q, r], clone=False)
    out_jx = fgraph_to_python(out_fg, to_python)

    sig = inspect.signature(out_jx)
    assert (x.auto_name, "_", z.auto_name, q.auto_name,
            r.name) == tuple(sig.parameters.keys())
    assert (1, 2, 3, 4, 5) == out_jx(1, 2, 3, 4, 5)

    obj = object()
    assert get_name_for_object(obj) == type(obj).__name__
Exemplo n.º 9
0
    def test_scalar_shapes(self):
        with pytest.raises(AssertionError, match="will never match"):
            specify_shape(vector(), shape=())
        with pytest.raises(AssertionError, match="will never match"):
            specify_shape(matrix(), shape=[])

        x = scalar()
        y = specify_shape(x, shape=())
        f = aesara.function([x], y, mode=self.mode)
        assert f(15) == 15
Exemplo n.º 10
0
 def t():
     f = function(
         [
             In(a, name={"adsf", ()}, value=1.0),
             In(x, name=(), value=2.0),
             In(s, name=scalar(), value=3.0),
         ],
         a + x + s,
     )
     return f
Exemplo n.º 11
0
    def test_scalar_input(self):
        x = scalar("x")

        assert self.op(aes.add, axis=(-1,))(x).eval({x: 5}) == 5

        with pytest.raises(
            np.AxisError,
            match=re.escape("axis (-2,) is out of bounds for array of dimension 0"),
        ):
            self.op(aes.add, axis=(-2,))(x)
Exemplo n.º 12
0
    def check_partial_function_output_keys(linker_name):
        x = scalar("input")
        y = 3 * x
        f = function([x], {
            "a": y * 5,
            "b": y - 7
        },
                     mode=Mode(optimizer=None, linker=linker_name))

        assert f(5, output_subset=["a"])["a"] == f(5)["a"]
Exemplo n.º 13
0
    def test_deepcopy(self):
        a = scalar()  # the a is for 'anonymous' (un-named).
        x, s = scalars("xs")

        f = function(
            [
                x,
                In(a, value=1.0, name="a"),
                In(s, value=0.0, update=s + a * x, mutable=True),
            ],
            s + a * x,
        )
        try:
            g = copy.deepcopy(f)
        except NotImplementedError as e:
            if e[0].startswith("DebugMode is not picklable"):
                return
            else:
                raise
        # if they both return, assume  that they return equivalent things.
        # print [(k,id(k)) for k in f.finder.keys()]
        # print [(k,id(k)) for k in g.finder.keys()]

        assert g.container[0].storage is not f.container[0].storage
        assert g.container[1].storage is not f.container[1].storage
        assert g.container[2].storage is not f.container[2].storage
        assert x not in g.container
        assert x not in g.value
        assert len(f.defaults) == len(g.defaults)
        assert f._check_for_aliased_inputs is g._check_for_aliased_inputs
        assert f.name == g.name
        assert f.maker.fgraph.name == g.maker.fgraph.name
        # print 'f.defaults = %s' % (f.defaults, )
        # print 'g.defaults = %s' % (g.defaults, )
        for ((f_req, f_feed, f_val), (g_req, g_feed, g_val)) in zip(
            f.defaults, g.defaults
        ):
            assert f_req == g_req and f_feed == g_feed and f_val == g_val

        assert g.value[1] is not f.value[1]  # should not have been copied
        assert (
            g.value[2] is not f.value[2]
        )  # should have been copied because it is mutable.
        assert not (g.value[2] != f.value[2]).any()  # its contents should be identical

        assert f(2, 1) == g(
            2
        )  # they should be in sync, default value should be copied.
        assert f(2, 1) == g(
            2
        )  # they should be in sync, default value should be copied.
        f(1, 2)  # put them out of sync
        assert f(1, 2) != g(1, 2)  # they should not be equal anymore.
        g(1, 2)  # put them back in sync
        assert f(3) == g(3)  # They should be in sync again.
Exemplo n.º 14
0
def test_jacobian_disconnected_inputs():
    # Test that disconnected inputs are properly handled by jacobian.

    v1 = vector()
    v2 = vector()
    jacobian_v = aesara.gradient.jacobian(1 + v1,
                                          v2,
                                          disconnected_inputs="ignore")
    func_v = aesara.function([v1, v2], jacobian_v)
    val = np.arange(4.0).astype(aesara.config.floatX)
    assert np.allclose(func_v(val, val), np.zeros((4, 4)))

    s1 = scalar()
    s2 = scalar()
    jacobian_s = aesara.gradient.jacobian(1 + s1,
                                          s2,
                                          disconnected_inputs="ignore")
    func_s = aesara.function([s2], jacobian_s)
    val = np.array(1.0).astype(aesara.config.floatX)
    assert np.allclose(func_s(val), np.zeros(1))
Exemplo n.º 15
0
    def test_grad_constant(self):
        # Test that the gradient handles Constants and consider_constant variables
        # consistently

        x = scalar()
        y = scalar()
        z_x = x + y
        z_one = one + y
        g_x = grad(z_x, x, consider_constant=[x])
        g_one = grad(z_one, one)

        f = aesara.function([x, y], [g_x, g_one])

        g_x, g_one = f(1, 0.5)

        if not np.allclose(g_x, g_one):
            raise AssertionError(
                "Gradient using consider constant is " + str(g_x) +
                " but gradient with respect to the same Constant is " +
                str(g_one))
Exemplo n.º 16
0
 def test_NNone_rval(self):
     # grad: Test returning some zero value from grad
     o = TestGrad.Obj1()
     a1 = o.make_node()
     g0, g1, g2 = grad(a1.outputs[0],
                       a1.inputs + [scalar("z")],
                       disconnected_inputs="ignore")
     assert o.gval0 is g0
     assert o.gval1 is g1
     assert g2.owner.op == aet.fill
     assert g2.owner.inputs[1].data == 0
Exemplo n.º 17
0
    def test_perform(self, shp):
        rng = np.random.default_rng(43)

        x = matrix()
        y = scalar()
        f = function([x, y], fill_diagonal(x, y))
        a = rng.random(shp).astype(config.floatX)
        val = np.cast[config.floatX](rng.random())
        out = f(a, val)
        # We can't use np.fill_diagonal as it is bugged.
        assert np.allclose(np.diag(out), val)
        assert (out == val).sum() == min(a.shape)
Exemplo n.º 18
0
    def test_debug_mode_dict(self):
        # Tests that debug mode works where outputs is a dictionary.

        x = scalar("x")

        f = function([x], outputs={"1": x, "2": 2 * x, "3": 3 * x}, mode="DEBUG_MODE")

        result = f(3.0)

        assert result["1"] == 3.0
        assert result["2"] == 6.0
        assert result["3"] == 9.0
Exemplo n.º 19
0
    def test_pushout3(self):
        x1 = scalar("x1")
        y1 = scalar("x2")
        y2 = scalar("y2")
        c = iscalar("c")
        two = np.asarray(2, dtype=aesara.config.floatX)
        x, y = ifelse(c, (x1, y1), (two, y2), name="f1")
        o3 = np.asarray(0.3, dtype=aesara.config.floatX)
        o2 = np.asarray(0.2, dtype=aesara.config.floatX)
        z = ifelse(c, o3, o2, name="f2")
        out = x * z * y

        f = function([x1, y1, y2, c], out, allow_input_downcast=True)
        assert isinstance(f.maker.fgraph.toposort()[-1].op, IfElse)
        rng = np.random.RandomState(utt.fetch_seed())
        vx1 = rng.uniform()
        vy1 = rng.uniform()
        vy2 = rng.uniform()

        assert np.allclose(f(vx1, vy1, vy2, 1), vx1 * vy1 * 0.3)
        assert np.allclose(f(vx1, vy1, vy2, 0), 2 * vy2 * 0.2)
Exemplo n.º 20
0
    def test_output_dictionary(self):
        # Tests that function works when outputs is a dictionary

        x = scalar()
        f = function([x], outputs={"a": x, "c": x * 2, "b": x * 3, "1": x * 4})

        outputs = f(10.0)

        assert outputs["a"] == 10.0
        assert outputs["b"] == 30.0
        assert outputs["1"] == 40.0
        assert outputs["c"] == 20.0
Exemplo n.º 21
0
    def test_debug_mode_list(self):
        # Tests that debug mode works where the outputs argument is a list.

        x = scalar("x")

        f = function([x], outputs=[x, 2 * x, 3 * x], mode="DEBUG_MODE")

        result = f(5.0)

        assert result[0] == 5.0
        assert result[1] == 10.0
        assert result[2] == 15.0
Exemplo n.º 22
0
    def test_pushout2(self):
        x1 = scalar("x1")
        x2 = scalar("x2")
        y1 = scalar("y1")
        y2 = scalar("y2")
        w1 = scalar("w1")
        w2 = scalar("w2")
        c = iscalar("c")
        x, y = ifelse(c, (x1, y1), (x2, y2), name="f1")
        z = ifelse(x > y, w1, w2, name="f2")
        out = x * z * y

        f = function([x1, x2, y1, y2, w1, w2, c], out, allow_input_downcast=True)
        assert isinstance(f.maker.fgraph.toposort()[-1].op, IfElse)
        rng = np.random.RandomState(utt.fetch_seed())
        vx1 = rng.uniform()
        vx2 = rng.uniform()
        vy1 = rng.uniform()
        vy2 = rng.uniform()
        vw1 = rng.uniform()
        vw2 = rng.uniform()
        if vx1 > vy1:
            vw = vw1
        else:
            vw = vw2
        assert np.allclose(f(vx1, vx2, vy1, vy2, vw1, vw2, 1), vx1 * vy1 * vw)

        if vx2 > vy2:
            vw = vw1
        else:
            vw = vw2
        assert np.allclose(f(vx1, vx2, vy1, vy2, vw1, vw2, 0), vx2 * vy2 * vw)
Exemplo n.º 23
0
    def test_merge_ifs_true_false(self):
        x1 = scalar("x1")
        x2 = scalar("x2")
        y1 = scalar("y1")
        y2 = scalar("y2")
        w1 = scalar("w1")
        w2 = scalar("w2")
        c = iscalar("c")

        out = ifelse(
            c,
            ifelse(c, x1, x2) + ifelse(c, y1, y2) + w1,
            ifelse(c, x1, x2) + ifelse(c, y1, y2) + w2,
        )
        f = function([x1, x2, y1, y2, w1, w2, c], out, allow_input_downcast=True)
        assert (
            len([x for x in f.maker.fgraph.toposort() if isinstance(x.op, IfElse)]) == 1
        )

        rng = np.random.RandomState(utt.fetch_seed())
        vx1 = rng.uniform()
        vx2 = rng.uniform()
        vy1 = rng.uniform()
        vy2 = rng.uniform()
        vw1 = rng.uniform()
        vw2 = rng.uniform()
        assert np.allclose(f(vx1, vx2, vy1, vy2, vw1, vw2, 1), vx1 + vy1 + vw1)
        assert np.allclose(f(vx1, vx2, vy1, vy2, vw1, vw2, 0), vx2 + vy2 + vw2)
Exemplo n.º 24
0
 def test_perform_3d(self):
     rng = np.random.default_rng(43)
     a = rng.random((3, 3, 3)).astype(config.floatX)
     x = tensor3()
     y = scalar()
     f = function([x, y], fill_diagonal(x, y))
     val = np.cast[config.floatX](rng.random() + 10)
     out = f(a, val)
     # We can't use np.fill_diagonal as it is bugged.
     assert out[0, 0, 0] == val
     assert out[1, 1, 1] == val
     assert out[2, 2, 2] == val
     assert (out == val).sum() == min(a.shape)
Exemplo n.º 25
0
 def test_naming_rule1(self):
     a = scalar()  # the a is for 'anonymous' (un-named).
     x, s = scalars("xs")
     f = function([a, s], a / s)
     assert f(1, 2) == 0.5
     assert f(2, 1) == 2.0
     assert f(2, s=1) == 2.0
     checkfor(
         self, lambda: f(q=2, s=1), TypeError
     )  # got unexpected keyword argument 'q'
     checkfor(
         self, lambda: f(a=2, s=1), TypeError
     )  # got unexpected keyword argument 'a'
Exemplo n.º 26
0
    def test_output_list_still_works(self):
        # Test that function works if outputs is a list.

        x = scalar("x")

        f = function([x], outputs=[x * 3, x * 2, x * 4, x])

        result = f(5.0)

        assert result[0] == 15.0
        assert result[1] == 10.0
        assert result[2] == 20.0
        assert result[3] == 5.0
Exemplo n.º 27
0
    def test_key_string_requirement(self):
        # Tests that an exception is thrown if a non-string key is used in
        # the outputs dictionary.
        x = scalar("x")

        with pytest.raises(AssertionError):
            function([x], outputs={1.0: x})

        with pytest.raises(AssertionError):
            function([x], outputs={1.0: x, "a": x**2})

        with pytest.raises(AssertionError):
            function([x], outputs={(1, "b"): x, 1.0: x**2})
Exemplo n.º 28
0
    def test_grad_int_value(self):
        w = aesara.shared(np.random.rand(10))
        b = aesara.shared(np.random.rand())
        params = [w, b]

        x = vector()
        y = scalar()

        score = w.dot(x) + b
        correct = score * y > 0

        loss = ifelse(correct, 0, 1)
        [(param, param - 0.5 * aesara.grad(cost=loss, wrt=param)) for param in params]
Exemplo n.º 29
0
class TestBinomial(utt.InferShapeTester):
    n = scalar(dtype="int64")
    p = scalar()
    shape = lvector()
    _n = 5
    _p = 0.25
    _shape = np.asarray([3, 5], dtype="int64")

    inputs = [n, p, shape]
    _inputs = [_n, _p, _shape]

    def setup_method(self):
        super().setup_method()
        self.op_class = Binomial

    def test_op(self):
        for sp_format in sparse.sparse_formats:
            for o_type in sparse.float_dtypes:
                f = aesara.function(self.inputs,
                                    Binomial(sp_format, o_type)(*self.inputs))

                tested = f(*self._inputs)

                assert tested.shape == tuple(self._shape)
                assert tested.format == sp_format
                assert tested.dtype == o_type
                assert np.allclose(np.floor(tested.todense()),
                                   tested.todense())

    def test_infer_shape(self):
        for sp_format in sparse.sparse_formats:
            for o_type in sparse.float_dtypes:
                self._compile_and_check(
                    self.inputs,
                    [Binomial(sp_format, o_type)(*self.inputs)],
                    self._inputs,
                    self.op_class,
                )
Exemplo n.º 30
0
def test_grad_scale():
    x = scalar()

    z = grad(grad_scale(x, 2)**2, x)
    z2 = grad(x**2, x)

    f = aesara.function([x], outputs=[z, z2])

    if config.mode != "FAST_COMPILE":
        topo = f.maker.fgraph.toposort()
        assert not any([isinstance(node.op, GradScale) for node in topo])
    out = f(2.0)

    assert np.allclose(out, (8, 4))