Exemplo n.º 1
0
 def __init__(
     self,
     data,
     batch_size=128,
     dtype=None,
     broadcastable=None,
     name="Minibatch",
     random_seed=42,
     update_shared_f=None,
     in_memory_size=None,
 ):
     if dtype is None:
         data = pm.smartfloatX(np.asarray(data))
     else:
         data = np.asarray(data, dtype)
     in_memory_slc = self.make_static_slices(in_memory_size)
     self.shared = aesara.shared(data[in_memory_slc])
     self.update_shared_f = update_shared_f
     self.random_slc = self.make_random_slices(self.shared.shape, batch_size, random_seed)
     minibatch = self.shared[self.random_slc]
     if broadcastable is None:
         broadcastable = (False,) * minibatch.ndim
     minibatch = aet.patternbroadcast(minibatch, broadcastable)
     self.minibatch = minibatch
     super().__init__(self.minibatch.type, None, None, name=name)
     Apply(aesara.compile.view_op, inputs=[self.minibatch], outputs=[self])
     self.tag.test_value = copy(self.minibatch.tag.test_value)
Exemplo n.º 2
0
 def convert_variable(self, var):
     vt = var.type
     if (isinstance(vt, type(self)) and self.typecode == vt.typecode
             and self.ndim == vt.ndim
             and self.context_name == vt.context_name and all(
                 sb == ob or ob
                 for sb, ob in zip(self.broadcastable, vt.broadcastable))):
         return at.patternbroadcast(var, self.broadcastable)
def test_local_dimshuffle_subtensor():

    dimshuffle_subtensor = out2in(local_dimshuffle_subtensor)

    x = tensor.dtensor4("x")
    x = tensor.patternbroadcast(x, (False, True, False, False))
    i = tensor.iscalar("i")

    out = x[:, :, 10:30, ::i].dimshuffle(0, 2, 3)

    g = FunctionGraph([x, i], [out])
    dimshuffle_subtensor(g)

    topo = g.toposort()
    assert any([not isinstance(x, DimShuffle) for x in topo])

    # Test dimshuffle remove dimensions the subtensor don't "see".
    x = tensor.tensor(broadcastable=(False, True, False), dtype="float64")
    out = x[i].dimshuffle(1)

    g = FunctionGraph([x, i], [out])
    dimshuffle_subtensor(g)

    topo = g.toposort()
    assert any([not isinstance(x, DimShuffle) for x in topo])

    # Test dimshuffle remove dimensions the subtensor don't "see" but
    # have in between dimensions.
    x = tensor.tensor(broadcastable=(False, True, False, True),
                      dtype="float64")
    out = x[i].dimshuffle(1)

    f = aesara.function([x, i], out)

    topo = f.maker.fgraph.toposort()
    assert any([not isinstance(x, DimShuffle) for x in topo])
    assert f(np.random.rand(5, 1, 4, 1), 2).shape == (4, )

    # Test a corner case that had Aesara return a bug.
    x = tensor.dtensor4("x")
    x = tensor.patternbroadcast(x, (False, True, False, False))

    assert x[:, :, 0:3, ::-1].dimshuffle(0, 2, 3).eval({
        x: np.ones((5, 1, 6, 7))
    }).shape == (5, 3, 7)