Exemplo n.º 1
0
def normal_lccdf(mu, sigma, x):
    z = (x - mu) / sigma
    return aet.switch(
        aet.gt(z, 1.0),
        aet.log(aet.erfcx(z / aet.sqrt(2.0)) / 2.0) - aet.sqr(z) / 2.0,
        aet.log1p(-aet.erfc(-z / aet.sqrt(2.0)) / 2.0),
    )
Exemplo n.º 2
0
def normal_lcdf(mu, sigma, x):
    """Compute the log of the cumulative density function of the normal."""
    z = (x - mu) / sigma
    return aet.switch(
        aet.lt(z, -1.0),
        aet.log(aet.erfcx(-z / aet.sqrt(2.0)) / 2.0) - aet.sqr(z) / 2.0,
        aet.log1p(-aet.erfc(z / aet.sqrt(2.0)) / 2.0),
    )
Exemplo n.º 3
0
def curfft(inp, norm=None):
    r"""
    Performs the fast Fourier transform of a real-valued input on the GPU.

    The input must be a real-valued float32 variable of dimensions (m, ..., n).
    It performs FFTs of size (..., n) on m batches.

    The output is a GpuArray of dimensions (m, ..., n//2+1, 2). The second to
    last dimension of the output contains the n//2+1 non-trivial elements of
    the real-valued FFTs. The real and imaginary parts are stored as a pair of
    float32 arrays.

    Parameters
    ----------
    inp
        Array of real-valued float32 of size (m, ..., n), containing m inputs of
        size (..., n).
    norm : {None, 'ortho', 'no_norm'}
        Normalization of transform. Following numpy, default *None* normalizes
        only the inverse transform by n, 'ortho' yields the unitary transform
        (:math:`1/\sqrt n` forward and inverse). In addition, 'no_norm' leaves
        the transform unnormalized.

    """

    s = inp.shape[1:]
    cond_norm = _unitary(norm)
    scaling = 1
    if cond_norm == "ortho":
        scaling = tt.sqrt(s.prod().astype("float32"))

    return curfft_op(inp, s) / scaling
Exemplo n.º 4
0
 def _build_prior(self, name, X, reparameterize=True, **kwargs):
     mu = self.mean_func(X)
     cov = stabilize(self.cov_func(X))
     shape = infer_shape(X, kwargs.pop("shape", None))
     if reparameterize:
         chi2 = pm.ChiSquared(name + "_chi2_", self.nu)
         v = pm.Normal(name + "_rotated_", mu=0.0, sigma=1.0, size=shape, **kwargs)
         f = pm.Deterministic(name, (at.sqrt(self.nu) / chi2) * (mu + cholesky(cov).dot(v)))
     else:
         f = pm.MvStudentT(name, nu=self.nu, mu=mu, cov=cov, size=shape, **kwargs)
     return f
Exemplo n.º 5
0
def log_diff_normal_cdf(mu, sigma, x, y):
    """
    Compute :math:`\\log(\\Phi(\frac{x - \\mu}{\\sigma}) - \\Phi(\frac{y - \\mu}{\\sigma}))` safely in log space.

    Parameters
    ----------
    mu: float
        mean
    sigma: float
        std

    x: float

    y: float
        must be strictly less than x.

    Returns
    -------
    log (\\Phi(x) - \\Phi(y))

    """
    x = (x - mu) / sigma / aet.sqrt(2.0)
    y = (y - mu) / sigma / aet.sqrt(2.0)

    # To stabilize the computation, consider these three regions:
    # 1) x > y > 0 => Use erf(x) = 1 - e^{-x^2} erfcx(x) and erf(y) =1 - e^{-y^2} erfcx(y)
    # 2) 0 > x > y => Use erf(x) = e^{-x^2} erfcx(-x) and erf(y) = e^{-y^2} erfcx(-y)
    # 3) x > 0 > y => Naive formula log( (erf(x) - erf(y)) / 2 ) works fine.
    return aet.log(0.5) + aet.switch(
        aet.gt(y, 0),
        -aet.square(y) + aet.log(
            aet.erfcx(y) -
            aet.exp(aet.square(y) - aet.square(x)) * aet.erfcx(x)),
        aet.switch(
            aet.lt(x, 0),  # 0 > x > y
            -aet.square(x) + aet.log(
                aet.erfcx(-x) -
                aet.exp(aet.square(x) - aet.square(y)) * aet.erfcx(-y)),
            aet.log(aet.erf(x) - aet.erf(y)),  # x >0 > y
        ),
    )
Exemplo n.º 6
0
 def full(self, X, Xs=None):
     X, Xs = self._slice(X, Xs)
     rx = self.lfunc(at.as_tensor_variable(X), self.args)
     if Xs is None:
         rz = self.lfunc(at.as_tensor_variable(X), self.args)
         r2 = self.square_dist(X, X)
     else:
         rz = self.lfunc(at.as_tensor_variable(Xs), self.args)
         r2 = self.square_dist(X, Xs)
     rx2 = at.reshape(at.square(rx), (-1, 1))
     rz2 = at.reshape(at.square(rz), (1, -1))
     return at.sqrt((2.0 * at.outer(rx, rz)) / (rx2 + rz2)) * at.exp(-1.0 * r2 / (rx2 + rz2))
Exemplo n.º 7
0
 def make_model(cls):
     with pm.Model() as model:
         sd_mu = np.array([1, 2, 3, 4, 5])
         sd_dist = pm.LogNormal.dist(mu=sd_mu, sigma=sd_mu / 10.0, size=5)
         chol_packed = pm.LKJCholeskyCov("chol_packed", eta=3, n=5, sd_dist=sd_dist)
         chol = pm.expand_packed_triangular(5, chol_packed, lower=True)
         cov = at.dot(chol, chol.T)
         stds = at.sqrt(at.diag(cov))
         pm.Deterministic("log_stds", at.log(stds))
         corr = cov / stds[None, :] / stds[:, None]
         corr_entries_unit = (corr[np.tril_indices(5, -1)] + 1) / 2
         pm.Deterministic("corr_entries_unit", corr_entries_unit)
     return model
Exemplo n.º 8
0
def adagrad_window(loss_or_grads=None,
                   params=None,
                   learning_rate=0.001,
                   epsilon=0.1,
                   n_win=10):
    """Returns a function that returns parameter updates.
    Instead of accumulated estimate, uses running window

    Parameters
    ----------
    loss_or_grads: symbolic expression or list of expressions
        A scalar loss expression, or a list of gradient expressions
    params: list of shared variables
        The variables to generate update expressions for
    learning_rate: float
        Learning rate.
    epsilon: float
        Offset to avoid zero-division in the normalizer of adagrad.
    n_win: int
        Number of past steps to calculate scales of parameter gradients.

    Returns
    -------
    OrderedDict
        A dictionary mapping each parameter to its update expression
    """
    if loss_or_grads is None and params is None:
        return partial(adagrad_window, **_get_call_kwargs(locals()))
    elif loss_or_grads is None or params is None:
        raise ValueError(
            "Please provide both `loss_or_grads` and `params` to get updates")
    grads = get_or_compute_grads(loss_or_grads, params)
    updates = OrderedDict()
    for param, grad in zip(params, grads):
        i = aesara.shared(pm.floatX(0))
        i_int = i.astype("int32")
        value = param.get_value(borrow=True)
        accu = aesara.shared(
            np.zeros(value.shape + (n_win, ), dtype=value.dtype))

        # Append squared gradient vector to accu_new
        accu_new = aet.set_subtensor(accu[..., i_int], grad**2)
        i_new = aet.switch((i + 1) < n_win, i + 1, 0)
        updates[accu] = accu_new
        updates[i] = i_new

        accu_sum = accu_new.sum(axis=-1)
        updates[param] = param - (learning_rate * grad /
                                  aet.sqrt(accu_sum + epsilon))
    return updates
Exemplo n.º 9
0
def cuirfft(inp, norm=None, is_odd=False):
    r"""
    Performs the inverse fast Fourier Transform with real-valued output on the GPU.

    The input is a variable of dimensions (m, ..., n//2+1, 2) with
    type float32 representing the non-trivial elements of m
    real-valued Fourier transforms of initial size (..., n). The real and
    imaginary parts are stored as a pair of float32 arrays.

    The output is a real-valued float32 variable of dimensions (m, ..., n)
    giving the m inverse FFTs.

    Parameters
    ----------
    inp
        Array of float32 of size (m, ..., n//2+1, 2), containing m inputs
        with n//2+1 non-trivial elements on the last dimension and real
        and imaginary parts stored as separate arrays.
    norm : {None, 'ortho', 'no_norm'}
        Normalization of transform. Following numpy, default *None* normalizes
        only the inverse transform by n, 'ortho' yields the unitary transform
        (:math:`1/\sqrt n` forward and inverse). In addition, 'no_norm' leaves
        the transform unnormalized.
    is_odd : {True, False}
        Set to True to get a real inverse transform output with an odd last dimension
        of length (N-1)*2 + 1 for an input last dimension of length N.

    """

    if is_odd not in (True, False):
        raise ValueError("Invalid value %s for id_odd, must be True or False" %
                         is_odd)

    s = inp.shape[1:-1]
    if is_odd:
        s = tt.set_subtensor(s[-1], (s[-1] - 1) * 2 + 1)
    else:
        s = tt.set_subtensor(s[-1], (s[-1] - 1) * 2)

    cond_norm = _unitary(norm)
    scaling = 1
    if cond_norm is None:
        scaling = s.prod().astype("float32")
    elif cond_norm == "ortho":
        scaling = tt.sqrt(s.prod().astype("float32"))

    return cuirfft_op(inp, s) / scaling
Exemplo n.º 10
0
    def logp(self, x):
        """
        Calculate log-probability of EulerMaruyama distribution at specified value.

        Parameters
        ----------
        x: numeric
            Value for which log-probability is calculated.

        Returns
        -------
        TensorVariable
        """
        xt = x[:-1]
        f, g = self.sde_fn(x[:-1], *self.sde_pars)
        mu = xt + self.dt * f
        sigma = at.sqrt(self.dt) * g
        return at.sum(Normal.dist(mu=mu, sigma=sigma).logp(x[1:]))
Exemplo n.º 11
0
    def _build_conditional(self, Xnew, pred_noise, diag):
        Xs, y, sigma = self.Xs, self.y, self.sigma

        # Old points
        X = cartesian(*Xs)
        delta = y - self.mean_func(X)
        Kns = [f(x) for f, x in zip(self.cov_funcs, Xs)]
        eigs_sep, Qs = zip(*map(eigh, Kns))  # Unzip
        QTs = list(map(at.transpose, Qs))
        eigs = kron_diag(*eigs_sep)  # Combine separate eigs
        if sigma is not None:
            eigs += sigma**2

        # New points
        Km = self.cov_func(Xnew, diag=diag)
        Knm = self.cov_func(X, Xnew)
        Kmn = Knm.T

        # Build conditional mu
        alpha = kron_dot(QTs, delta)
        alpha = alpha / eigs[:, None]
        alpha = kron_dot(Qs, alpha)
        mu = at.dot(Kmn, alpha).ravel() + self.mean_func(Xnew)

        # Build conditional cov
        A = kron_dot(QTs, Knm)
        A = A / at.sqrt(eigs[:, None])
        if diag:
            Asq = at.sum(at.square(A), 0)
            cov = Km - Asq
            if pred_noise:
                cov += sigma
        else:
            Asq = at.dot(A.T, A)
            cov = Km - Asq
            if pred_noise:
                cov += sigma * at.identity_like(cov)
        return mu, cov
Exemplo n.º 12
0
 def std(self):
     return at.sqrt(at.diag(self.cov))
Exemplo n.º 13
0
 def std(self):
     if self.batched:
         return at.sqrt(batched_diag(self.cov))
     else:
         return at.sqrt(at.diag(self.cov))
Exemplo n.º 14
0
def invprobit(x):
    return 0.5 * erfc(-x / sqrt(2.0))
Exemplo n.º 15
0
def std_cdf(x):
    """
    Calculates the standard normal cumulative distribution function.
    """
    return 0.5 + 0.5 * aet.erf(x / aet.sqrt(2.0))
Exemplo n.º 16
0
def adadelta(loss_or_grads=None,
             params=None,
             learning_rate=1.0,
             rho=0.95,
             epsilon=1e-6):
    r""" Adadelta updates

    Scale learning rates by the ratio of accumulated gradients to accumulated
    updates, see [1]_ and notes for further description.

    Parameters
    ----------
    loss_or_grads : symbolic expression or list of expressions
        A scalar loss expression, or a list of gradient expressions
    params : list of shared variables
        The variables to generate update expressions for
    learning_rate : float or symbolic scalar
        The learning rate controlling the size of update steps
    rho : float or symbolic scalar
        Squared gradient moving average decay factor
    epsilon : float or symbolic scalar
        Small value added for numerical stability

    Returns
    -------
    OrderedDict
        A dictionary mapping each parameter to its update expression

    Notes
    -----
    rho should be between 0 and 1. A value of rho close to 1 will decay the
    moving average slowly and a value close to 0 will decay the moving average
    fast.

    rho = 0.95 and epsilon=1e-6 are suggested in the paper and reported to
    work for multiple datasets (MNIST, speech).

    In the paper, no learning rate is considered (so learning_rate=1.0).
    Probably best to keep it at this value.
    epsilon is important for the very first update (so the numerator does
    not become 0).

    Using the step size eta and a decay factor rho the learning rate is
    calculated as:

    .. math::
       r_t &= \\rho r_{t-1} + (1-\\rho)*g^2\\\\
       \\eta_t &= \\eta \\frac{\\sqrt{s_{t-1} + \\epsilon}}
                             {\sqrt{r_t + \epsilon}}\\\\
       s_t &= \\rho s_{t-1} + (1-\\rho)*(\\eta_t*g)^2

    Optimizer can be called without both loss_or_grads and params
    in that case partial function is returned

    References
    ----------
    .. [1] Zeiler, M. D. (2012):
           ADADELTA: An Adaptive Learning Rate Method.
           arXiv Preprint arXiv:1212.5701.

    Examples
    --------
    >>> a = aesara.shared(1.)
    >>> b = a*2
    >>> updates = adadelta(b, [a], learning_rate=.01)
    >>> isinstance(updates, dict)
    True
    >>> optimizer = adadelta(learning_rate=.01)
    >>> callable(optimizer)
    True
    >>> updates = optimizer(b, [a])
    >>> isinstance(updates, dict)
    True
    """
    if loss_or_grads is None and params is None:
        return partial(adadelta, **_get_call_kwargs(locals()))
    elif loss_or_grads is None or params is None:
        raise ValueError(
            "Please provide both `loss_or_grads` and `params` to get updates")
    grads = get_or_compute_grads(loss_or_grads, params)
    updates = OrderedDict()

    # Using aesara constant to prevent upcasting of float32
    one = aet.constant(1)

    for param, grad in zip(params, grads):
        value = param.get_value(borrow=True)
        # accu: accumulate gradient magnitudes
        accu = aesara.shared(np.zeros(value.shape, dtype=value.dtype),
                             broadcastable=param.broadcastable)
        # delta_accu: accumulate update magnitudes (recursively!)
        delta_accu = aesara.shared(np.zeros(value.shape, dtype=value.dtype),
                                   broadcastable=param.broadcastable)

        # update accu (as in rmsprop)
        accu_new = rho * accu + (one - rho) * grad**2
        updates[accu] = accu_new

        # compute parameter update, using the 'old' delta_accu
        update = grad * aet.sqrt(delta_accu + epsilon) / aet.sqrt(accu_new +
                                                                  epsilon)
        updates[param] = param - learning_rate * update

        # update delta_accu (as accu, but accumulating updates)
        delta_accu_new = rho * delta_accu + (one - rho) * update**2
        updates[delta_accu] = delta_accu_new

    return updates
Exemplo n.º 17
0
def rmsprop(loss_or_grads=None,
            params=None,
            learning_rate=1.0,
            rho=0.9,
            epsilon=1e-6):
    """RMSProp updates

    Scale learning rates by dividing with the moving average of the root mean
    squared (RMS) gradients. See [1]_ for further description.

    Parameters
    ----------
    loss_or_grads: symbolic expression or list of expressions
        A scalar loss expression, or a list of gradient expressions
    params: list of shared variables
        The variables to generate update expressions for
    learning_rate: float or symbolic scalar
        The learning rate controlling the size of update steps
    rho: float or symbolic scalar
        Gradient moving average decay factor
    epsilon: float or symbolic scalar
        Small value added for numerical stability

    Returns
    -------
    OrderedDict
        A dictionary mapping each parameter to its update expression

    Notes
    -----
    `rho` should be between 0 and 1. A value of `rho` close to 1 will decay the
    moving average slowly and a value close to 0 will decay the moving average
    fast.

    Using the step size :math:`\\eta` and a decay factor :math:`\\rho` the
    learning rate :math:`\\eta_t` is calculated as:

    .. math::
       r_t &= \\rho r_{t-1} + (1-\\rho)*g^2\\\\
       \\eta_t &= \\frac{\\eta}{\\sqrt{r_t + \\epsilon}}


    Optimizer can be called without both loss_or_grads and params
    in that case partial function is returned

    References
    ----------
    .. [1] Tieleman, aet. and Hinton, G. (2012):
           Neural Networks for Machine Learning, Lecture 6.5 - rmsprop.
           Coursera. http://www.youtube.com/watch?v=O3sxAc4hxZU (formula @5:20)

    Examples
    --------
    >>> a = aesara.shared(1.)
    >>> b = a*2
    >>> updates = rmsprop(b, [a], learning_rate=.01)
    >>> isinstance(updates, dict)
    True
    >>> optimizer = rmsprop(learning_rate=.01)
    >>> callable(optimizer)
    True
    >>> updates = optimizer(b, [a])
    >>> isinstance(updates, dict)
    True
    """
    if loss_or_grads is None and params is None:
        return partial(rmsprop, **_get_call_kwargs(locals()))
    elif loss_or_grads is None or params is None:
        raise ValueError(
            "Please provide both `loss_or_grads` and `params` to get updates")
    grads = get_or_compute_grads(loss_or_grads, params)
    updates = OrderedDict()

    # Using aesara constant to prevent upcasting of float32
    one = aet.constant(1)

    for param, grad in zip(params, grads):
        value = param.get_value(borrow=True)
        accu = aesara.shared(np.zeros(value.shape, dtype=value.dtype),
                             broadcastable=param.broadcastable)
        accu_new = rho * accu + (one - rho) * grad**2
        updates[accu] = accu_new
        updates[param] = param - (learning_rate * grad /
                                  aet.sqrt(accu_new + epsilon))

    return updates
Exemplo n.º 18
0
def adagrad(loss_or_grads=None, params=None, learning_rate=1.0, epsilon=1e-6):
    """Adagrad updates

    Scale learning rates by dividing with the square root of accumulated
    squared gradients. See [1]_ for further description.

    Parameters
    ----------
    loss_or_grads: symbolic expression or list of expressions
        A scalar loss expression, or a list of gradient expressions
    params: list of shared variables
        The variables to generate update expressions for
    learning_rate: float or symbolic scalar
        The learning rate controlling the size of update steps
    epsilon: float or symbolic scalar
        Small value added for numerical stability

    Returns
    -------
    OrderedDict
        A dictionary mapping each parameter to its update expression

    Notes
    -----
    Using step size eta Adagrad calculates the learning rate for feature i at
    time step t as:

    .. math:: \\eta_{t,i} = \\frac{\\eta}
       {\\sqrt{\\sum^t_{t^\\prime} g^2_{t^\\prime,i}+\\epsilon}} g_{t,i}

    as such the learning rate is monotonically decreasing.

    Epsilon is not included in the typical formula, see [2]_.

    Optimizer can be called without both loss_or_grads and params
    in that case partial function is returned

    References
    ----------
    .. [1] Duchi, J., Hazan, E., & Singer, Y. (2011):
           Adaptive subgradient methods for online learning and stochastic
           optimization. JMLR, 12:2121-2159.

    .. [2] Chris Dyer:
           Notes on AdaGrad. http://www.ark.cs.cmu.edu/cdyer/adagrad.pdf

    Examples
    --------
    >>> a = aesara.shared(1.)
    >>> b = a*2
    >>> updates = adagrad(b, [a], learning_rate=.01)
    >>> isinstance(updates, dict)
    True
    >>> optimizer = adagrad(learning_rate=.01)
    >>> callable(optimizer)
    True
    >>> updates = optimizer(b, [a])
    >>> isinstance(updates, dict)
    True
    """
    if loss_or_grads is None and params is None:
        return partial(adagrad, **_get_call_kwargs(locals()))
    elif loss_or_grads is None or params is None:
        raise ValueError(
            "Please provide both `loss_or_grads` and `params` to get updates")
    grads = get_or_compute_grads(loss_or_grads, params)
    updates = OrderedDict()

    for param, grad in zip(params, grads):
        value = param.get_value(borrow=True)
        accu = aesara.shared(np.zeros(value.shape, dtype=value.dtype),
                             broadcastable=param.broadcastable)
        accu_new = accu + grad**2
        updates[accu] = accu_new
        updates[param] = param - (learning_rate * grad /
                                  aet.sqrt(accu_new + epsilon))

    return updates
Exemplo n.º 19
0
def total_norm_constraint(tensor_vars,
                          max_norm,
                          epsilon=1e-7,
                          return_norm=False):
    """Rescales a list of tensors based on their combined norm

    If the combined norm of the input tensors exceeds the threshold then all
    tensors are rescaled such that the combined norm is equal to the threshold.

    Scaling the norms of the gradients is often used when training recurrent
    neural networks [1]_.

    Parameters
    ----------
    tensor_vars: List of TensorVariables.
        Tensors to be rescaled.
    max_norm: float
        Threshold value for total norm.
    epsilon: scalar, optional
        Value used to prevent numerical instability when dividing by
        very small or zero norms.
    return_norm: bool
        If true the total norm is also returned.

    Returns
    -------
    tensor_vars_scaled: list of TensorVariables
        The scaled tensor variables.
    norm: Aesara scalar
        The combined norms of the input variables prior to rescaling,
        only returned if ``return_norms=True``.

    Examples
    --------
    >>> from lasagne.layers import InputLayer, DenseLayer
    >>> import lasagne
    >>> from lasagne.updates import sgd, total_norm_constraint
    >>> x = aet.matrix()
    >>> y = aet.ivector()
    >>> l_in = InputLayer((5, 10))
    >>> l1 = DenseLayer(l_in, num_units=7, nonlinearity=aet.nnet.softmax)
    >>> output = lasagne.layers.get_output(l1, x)
    >>> cost = aet.mean(aet.nnet.categorical_crossentropy(output, y))
    >>> all_params = lasagne.layers.get_all_params(l1)
    >>> all_grads = aet.grad(cost, all_params)
    >>> scaled_grads = total_norm_constraint(all_grads, 5)
    >>> updates = sgd(scaled_grads, all_params, learning_rate=0.1)

    Notes
    -----
    The total norm can be used to monitor training.

    References
    ----------
    .. [1] Sutskever, I., Vinyals, O., & Le, Q. V. (2014): Sequence to sequence
       learning with neural networks. In Advances in Neural Information
       Processing Systems (pp. 3104-3112).
    """
    norm = aet.sqrt(sum(aet.sum(tensor**2) for tensor in tensor_vars))
    dtype = np.dtype(aesara.config.floatX).type
    target_norm = aet.clip(norm, 0, dtype(max_norm))
    multiplier = target_norm / (dtype(epsilon) + norm)
    tensor_vars_scaled = [step * multiplier for step in tensor_vars]

    if return_norm:
        return tensor_vars_scaled, norm
    else:
        return tensor_vars_scaled
Exemplo n.º 20
0
 def euclidean_dist(self, X, Xs):
     r2 = self.square_dist(X, Xs)
     return at.sqrt(r2 + 1e-12)
Exemplo n.º 21
0
def test_batch_normalization_train():

    for axes in ("per-activation", "spatial", (1, 2, 3, 4)):
        for vartype in (tensor5, tensor3, vector):
            x, scale, bias, running_mean, running_var = (vartype(n) for n in (
                "x", "scale", "bias", "running_mean", "running_var"))
            ndim = x.ndim
            eps = 5e-3  # some non-standard value to test if it's used
            running_average_factor = 0.3

            # remove non-existing axes
            if isinstance(axes, tuple):
                axes = tuple(i for i in axes if i < ndim)
            if len(axes) == 0:
                continue

            # forward pass
            (
                out,
                x_mean,
                x_invstd,
                out_running_mean,
                out_running_var,
            ) = batchnorm.batch_normalization_train(
                x,
                scale,
                bias,
                axes,
                eps,
                running_average_factor,
                running_mean,
                running_var,
            )
            # reference forward pass
            if axes == "per-activation":
                axes2 = (0, )
            elif axes == "spatial":
                axes2 = (0, ) + tuple(range(2, ndim))
            else:
                axes2 = axes
            x_mean2 = x.mean(axis=axes2, keepdims=True)
            x_var2 = x.var(axis=axes2, keepdims=True)
            x_invstd2 = aet.reciprocal(aet.sqrt(x_var2 + eps))
            scale2 = aet.addbroadcast(scale, *axes2)
            bias2 = aet.addbroadcast(bias, *axes2)
            out2 = (x - x_mean2) * (scale2 * x_invstd2) + bias2
            m = aet.cast(
                aet.prod(x.shape) / aet.prod(scale.shape),
                aesara.config.floatX)
            out_running_mean2 = (running_mean * (1 - running_average_factor) +
                                 x_mean2 * running_average_factor)
            out_running_var2 = (running_var * (1 - running_average_factor) +
                                (m /
                                 (m - 1)) * x_var2 * running_average_factor)
            # backward pass
            dy = vartype("dy")
            grads = aet.grad(None, wrt=[x, scale, bias], known_grads={out: dy})
            # reference backward pass
            grads2 = aet.grad(None,
                              wrt=[x, scale, bias],
                              known_grads={out2: dy})
            # second-order backward pass
            dx = vartype("dinputs")
            dscale = vartype("dscale")
            dbias = vartype("dbias")
            grad_grads = aet.grad(
                None,
                wrt=[x, dy, scale],
                known_grads=OrderedDict({
                    grads[0]: dx,
                    grads[1]: dscale,
                    grads[2]: dbias
                }),
                consider_constant=[
                    x,
                    dy,
                    scale,
                    bias,
                    x_mean,
                    x_invstd,
                    running_mean,
                    running_var,
                ],
                return_disconnected="zero",
            )
            # reference second-order backward pass
            grad_grads2 = aet.grad(
                None,
                wrt=[x, dy, scale],
                known_grads=OrderedDict({
                    grads2[0]: dx,
                    grads2[1]: dscale,
                    grads2[2]: dbias
                }),
                consider_constant=[
                    x,
                    dy,
                    scale,
                    bias,
                    x_mean2,
                    x_var2,
                    running_mean,
                    running_var,
                ],
                return_disconnected="zero",
            )
            # compile
            f = aesara.function(
                [
                    x, scale, bias, running_mean, running_var, dy, dx, dscale,
                    dbias
                ],
                [
                    out,
                    x_mean,
                    x_invstd,
                    out_running_mean,
                    out_running_var,
                    out2,
                    x_mean2,
                    x_invstd2,
                    out_running_mean2,
                    out_running_var2,
                ] + grads + grads2 + grad_grads + grad_grads2,
            )
            # check if the abstract Ops have been replaced
            assert not any([
                isinstance(
                    n.op,
                    (
                        batchnorm.AbstractBatchNormTrain,
                        batchnorm.AbstractBatchNormInference,
                        batchnorm.AbstractBatchNormTrainGrad,
                    ),
                ) for n in f.maker.fgraph.toposort()
            ])
            # run
            for data_shape in ((5, 10, 30, 40, 10), (4, 3, 1, 1, 1), (2, 3, 5,
                                                                      5, 5)):
                data_shape = data_shape[:ndim]
                param_shape = tuple(1 if d in axes2 else s
                                    for d, s in enumerate(data_shape))

                rng = np.random.default_rng(1234)

                X = 4 + 3 * rng.random(data_shape).astype(aesara.config.floatX)
                Dy = -1 + 2 * rng.random(data_shape).astype(
                    aesara.config.floatX)
                Scale = rng.random(param_shape).astype(aesara.config.floatX)
                Bias = rng.random(param_shape).astype(aesara.config.floatX)
                Running_mean = rng.random(param_shape).astype(
                    aesara.config.floatX)
                Running_var = rng.random(param_shape).astype(
                    aesara.config.floatX)
                Dx = 4 + 3 * rng.random(data_shape).astype(
                    aesara.config.floatX)
                Dscale = -1 + 2 * rng.random(param_shape).astype(
                    aesara.config.floatX)
                Dbias = rng.random(param_shape).astype(aesara.config.floatX)

                outputs = f(X, Scale, Bias, Running_mean, Running_var, Dy, Dx,
                            Dscale, Dbias)
                # compare outputs
                utt.assert_allclose(outputs[0], outputs[0 + 5])  # out
                utt.assert_allclose(outputs[1], outputs[1 + 5])  # mean
                utt.assert_allclose(outputs[2], outputs[2 + 5])  # invstd
                utt.assert_allclose(outputs[3], outputs[3 + 5])  # running_mean
                utt.assert_allclose(np.nan_to_num(outputs[4]),
                                    np.nan_to_num(outputs[4 +
                                                          5]))  # running_var
                # compare gradients
                utt.assert_allclose(outputs[10], outputs[10 + 3],
                                    atol=1e-4)  # dx
                utt.assert_allclose(outputs[11],
                                    outputs[11 + 3],
                                    rtol=2e-4,
                                    atol=1e-4)  # dscale
                utt.assert_allclose(outputs[12], outputs[12 + 3])  # dbias
                # compare second-order gradients
                utt.assert_allclose(outputs[16], outputs[16 + 3],
                                    atol=1e-4)  # ddx
                utt.assert_allclose(outputs[17], outputs[17 + 3])  # ddy
                utt.assert_allclose(outputs[18],
                                    outputs[18 + 3],
                                    rtol=3e-4,
                                    atol=1e-4)  # ddscale
Exemplo n.º 22
0
def test_batch_normalization_test():
    for axes in ("per-activation", "spatial", (1, 2, 3, 4)):
        for vartype in (tensor5, tensor3, vector):
            x, scale, bias, mean, var = (vartype(n)
                                         for n in ("x", "scale", "bias",
                                                   "mean", "var"))
            ndim = x.ndim
            eps = 5e-3  # some non-standard value to test if it's used

            # remove non-existing axes
            if isinstance(axes, tuple):
                axes = tuple(i for i in axes if i < ndim)
            if len(axes) == 0:
                continue

            # forward pass
            out = batchnorm.batch_normalization_test(x, scale, bias, mean, var,
                                                     axes, eps)
            # reference forward pass
            if axes == "per-activation":
                axes2 = (0, )
            elif axes == "spatial":
                axes2 = (0, ) + tuple(range(2, ndim))
            else:
                axes2 = axes
            scale2, bias2, mean2, var2 = (aet.addbroadcast(t, *axes2)
                                          for t in (scale, bias, mean, var))
            out2 = (x - mean2) * (scale2 / aet.sqrt(var2 + eps)) + bias2
            # backward pass
            dy = vartype("dy")
            grads = aet.grad(None,
                             wrt=[x, scale, bias, mean, var],
                             known_grads={out: dy})
            # reference backward pass
            grads2 = aet.grad(None,
                              wrt=[x, scale, bias, mean, var],
                              known_grads={out2: dy})
            # compile
            f = aesara.function([x, scale, bias, mean, var, dy],
                                [out, out2] + grads + grads2)
            # check if the abstract Ops have been replaced
            assert not any([
                isinstance(
                    n.op,
                    (
                        batchnorm.AbstractBatchNormTrain,
                        batchnorm.AbstractBatchNormInference,
                        batchnorm.AbstractBatchNormTrainGrad,
                    ),
                ) for n in f.maker.fgraph.toposort()
            ])
            # run
            for data_shape in ((10, 20, 30, 40, 10), (4, 3, 1, 1, 1), (1, 1, 5,
                                                                       5, 5)):
                data_shape = data_shape[:ndim]
                param_shape = tuple(1 if d in axes2 else s
                                    for d, s in enumerate(data_shape))
                rng = np.random.default_rng(1234)
                X = 4 + 3 * rng.random(data_shape).astype(aesara.config.floatX)
                Dy = -1 + 2 * rng.random(data_shape).astype(
                    aesara.config.floatX)
                Scale = rng.random(param_shape).astype(aesara.config.floatX)
                Bias = rng.random(param_shape).astype(aesara.config.floatX)
                Mean = rng.random(param_shape).astype(aesara.config.floatX)
                Var = rng.random(param_shape).astype(aesara.config.floatX)
                outputs = f(X, Scale, Bias, Mean, Var, Dy)
                # compare outputs
                utt.assert_allclose(outputs[0], outputs[1])  # out
                # compare gradients
                utt.assert_allclose(outputs[2], outputs[2 + 5],
                                    atol=4e-5)  # dx
                utt.assert_allclose(outputs[3], outputs[3 + 5],
                                    atol=4e-5)  # dscale
                utt.assert_allclose(outputs[4], outputs[4 + 5])  # dbias
                utt.assert_allclose(outputs[5], outputs[5 + 5])  # dmean
                utt.assert_allclose(outputs[6],
                                    outputs[6 + 5],
                                    rtol=2e-3,
                                    atol=4e-5)  # dvar
Exemplo n.º 23
0
def norm_constraint(tensor_var, max_norm, norm_axes=None, epsilon=1e-7):
    """Max weight norm constraints and gradient clipping

    This takes a TensorVariable and rescales it so that incoming weight
    norms are below a specified constraint value. Vectors violating the
    constraint are rescaled so that they are within the allowed range.

    Parameters
    ----------
    tensor_var: TensorVariable
        Aesara expression for update, gradient, or other quantity.
    max_norm: scalar
        This value sets the maximum allowed value of any norm in
        `tensor_var`.
    norm_axes: sequence (list or tuple)
        The axes over which to compute the norm.  This overrides the
        default norm axes defined for the number of dimensions
        in `tensor_var`. When this is not specified and `tensor_var` is a
        matrix (2D), this is set to `(0,)`. If `tensor_var` is a 3D, 4D or
        5D tensor, it is set to a tuple listing all axes but axis 0. The
        former default is useful for working with dense layers, the latter
        is useful for 1D, 2D and 3D convolutional layers.
        (Optional)
    epsilon: scalar, optional
        Value used to prevent numerical instability when dividing by
        very small or zero norms.

    Returns
    -------
    TensorVariable
        Input `tensor_var` with rescaling applied to weight vectors
        that violate the specified constraints.

    Examples
    --------
    >>> param = aesara.shared(
    ...     np.random.randn(100, 200).astype(aesara.config.floatX))
    >>> update = param + 100
    >>> update = norm_constraint(update, 10)
    >>> func = aesara.function([], [], updates=[(param, update)])
    >>> # Apply constrained update
    >>> _ = func()
    >>> from lasagne.utils import compute_norms
    >>> norms = compute_norms(param.get_value())
    >>> np.isclose(np.max(norms), 10)
    True

    Notes
    -----
    When `norm_axes` is not specified, the axes over which the norm is
    computed depend on the dimensionality of the input variable. If it is
    2D, it is assumed to come from a dense layer, and the norm is computed
    over axis 0. If it is 3D, 4D or 5D, it is assumed to come from a
    convolutional layer and the norm is computed over all trailing axes
    beyond axis 0. For other uses, you should explicitly specify the axes
    over which to compute the norm using `norm_axes`.
    """
    ndim = tensor_var.ndim

    if norm_axes is not None:
        sum_over = tuple(norm_axes)
    elif ndim == 2:  # DenseLayer
        sum_over = (0, )
    elif ndim in [3, 4, 5]:  # Conv{1,2,3}DLayer
        sum_over = tuple(range(1, ndim))
    else:
        raise ValueError("Unsupported tensor dimensionality {}."
                         "Must specify `norm_axes`".format(ndim))

    dtype = np.dtype(aesara.config.floatX).type
    norms = aet.sqrt(aet.sum(aet.sqr(tensor_var), axis=sum_over,
                             keepdims=True))
    target_norms = aet.clip(norms, 0, dtype(max_norm))
    constrained_output = tensor_var * (target_norms / (dtype(epsilon) + norms))

    return constrained_output
Exemplo n.º 24
0
    def normal(
        self,
        size,
        avg=0.0,
        std=1.0,
        ndim=None,
        dtype=None,
        nstreams=None,
        truncate=False,
        **kwargs,
    ):
        """
        Sample a tensor of values from a normal distribution.

        Parameters
        ----------
        size : int_vector_like
            Array dimensions for the output tensor.
        avg : float_like, optional
            The mean value for the truncated normal to sample from (defaults to 0.0).
        std : float_like, optional
            The standard deviation for the truncated normal to sample from (defaults to 1.0).
        truncate : bool, optional
            Truncates the normal distribution at 2 standard deviations if True (defaults to False).
            When this flag is set, the standard deviation of the result will be less than the one specified.
        ndim : int, optional
            The number of dimensions for the output tensor (defaults to None).
            This argument is necessary if the size argument is ambiguous on the number of dimensions.
        dtype : str, optional
            The data-type for the output tensor. If not specified,
            the dtype is inferred from avg and std, but it is at least as precise as floatX.
        kwargs
            Other keyword arguments for random number generation (see uniform).

        Returns
        -------
        samples : TensorVariable
            A Aesara tensor of samples randomly drawn from a normal distribution.

        """
        size = _check_size(size)
        avg = undefined_grad(as_tensor_variable(avg))
        std = undefined_grad(as_tensor_variable(std))

        if dtype is None:
            dtype = scal.upcast(config.floatX, avg.dtype, std.dtype)

        avg = tensor.cast(avg, dtype=dtype)
        std = tensor.cast(std, dtype=dtype)

        # generate even number of uniform samples
        # Do manual constant folding to lower optiimizer work.
        if isinstance(size, aesara.Constant):
            n_odd_samples = size.prod(dtype="int64")
        else:
            n_odd_samples = tensor.prod(size, dtype="int64")
        n_even_samples = n_odd_samples + n_odd_samples % 2
        uniform = self.uniform(
            (n_even_samples, ),
            low=0.0,
            high=1.0,
            ndim=1,
            dtype=dtype,
            nstreams=nstreams,
            **kwargs,
        )

        # box-muller transform
        u1 = uniform[:n_even_samples // 2]
        u2 = uniform[n_even_samples // 2:]
        r = tensor.sqrt(-2.0 * tensor.log(u1))
        theta = np.array(2.0 * np.pi, dtype=dtype) * u2
        cos_theta, sin_theta = tensor.cos(theta), tensor.sin(theta)
        z0 = r * cos_theta
        z1 = r * sin_theta

        if truncate:
            # use valid samples
            to_fix0 = (z0 < -2.0) | (z0 > 2.0)
            to_fix1 = (z1 < -2.0) | (z1 > 2.0)
            z0_valid = z0[tensor.nonzero(~to_fix0)]
            z1_valid = z1[tensor.nonzero(~to_fix1)]

            # re-sample invalid samples
            to_fix0 = tensor.nonzero(to_fix0)[0]
            to_fix1 = tensor.nonzero(to_fix1)[0]
            n_fix_samples = to_fix0.size + to_fix1.size
            lower = tensor.constant(1.0 / np.e**2, dtype=dtype)
            u_fix = self.uniform(
                (n_fix_samples, ),
                low=lower,
                high=1.0,
                ndim=1,
                dtype=dtype,
                nstreams=nstreams,
                **kwargs,
            )
            r_fix = tensor.sqrt(-2.0 * tensor.log(u_fix))
            z0_fixed = r_fix[:to_fix0.size] * cos_theta[to_fix0]
            z1_fixed = r_fix[to_fix0.size:] * sin_theta[to_fix1]

            # pack everything together to a useful result
            norm_samples = tensor.join(0, z0_valid, z0_fixed, z1_valid,
                                       z1_fixed)
        else:
            norm_samples = tensor.join(0, z0, z1)
        if isinstance(n_odd_samples, aesara.Variable):
            samples = norm_samples[:n_odd_samples]
        elif n_odd_samples % 2 == 1:
            samples = norm_samples[:-1]
        else:
            samples = norm_samples
        samples = tensor.reshape(samples, newshape=size, ndim=ndim)
        samples *= std
        samples += avg

        return samples
Exemplo n.º 25
0
def probit(p):
    return -sqrt(2.0) * erfcinv(2.0 * p)
Exemplo n.º 26
0
def adam(loss_or_grads=None,
         params=None,
         learning_rate=0.001,
         beta1=0.9,
         beta2=0.999,
         epsilon=1e-8):
    """Adam updates

    Adam updates implemented as in [1]_.

    Parameters
    ----------
    loss_or_grads: symbolic expression or list of expressions
        A scalar loss expression, or a list of gradient expressions
    params: list of shared variables
        The variables to generate update expressions for
    learning_rate: float
        Learning rate
    beta1: float
        Exponential decay rate for the first moment estimates.
    beta2: float
        Exponential decay rate for the second moment estimates.
    epsilon: float
        Constant for numerical stability.

    Returns
    -------
    OrderedDict
        A dictionary mapping each parameter to its update expression

    Notes
    -----
    The paper [1]_ includes an additional hyperparameter lambda. This is only
    needed to prove convergence of the algorithm and has no practical use
    (personal communication with the authors), it is therefore omitted here.

    Optimizer can be called without both loss_or_grads and params
    in that case partial function is returned

    References
    ----------
    .. [1] Kingma, Diederik, and Jimmy Ba (2014):
           Adam: A Method for Stochastic Optimization.
           arXiv preprint arXiv:1412.6980.

    Examples
    --------
    >>> a = aesara.shared(1.)
    >>> b = a*2
    >>> updates = adam(b, [a], learning_rate=.01)
    >>> isinstance(updates, dict)
    True
    >>> optimizer = adam(learning_rate=.01)
    >>> callable(optimizer)
    True
    >>> updates = optimizer(b, [a])
    >>> isinstance(updates, dict)
    True
    """
    if loss_or_grads is None and params is None:
        return partial(adam, **_get_call_kwargs(locals()))
    elif loss_or_grads is None or params is None:
        raise ValueError(
            "Please provide both `loss_or_grads` and `params` to get updates")
    all_grads = get_or_compute_grads(loss_or_grads, params)
    t_prev = aesara.shared(pm.aesaraf.floatX(0.0))
    updates = OrderedDict()

    # Using aesara constant to prevent upcasting of float32
    one = aet.constant(1)

    t = t_prev + 1
    a_t = learning_rate * aet.sqrt(one - beta2**t) / (one - beta1**t)

    for param, g_t in zip(params, all_grads):
        value = param.get_value(borrow=True)
        m_prev = aesara.shared(np.zeros(value.shape, dtype=value.dtype),
                               broadcastable=param.broadcastable)
        v_prev = aesara.shared(np.zeros(value.shape, dtype=value.dtype),
                               broadcastable=param.broadcastable)

        m_t = beta1 * m_prev + (one - beta1) * g_t
        v_t = beta2 * v_prev + (one - beta2) * g_t**2
        step = a_t * m_t / (aet.sqrt(v_t) + epsilon)

        updates[m_prev] = m_t
        updates[v_prev] = v_t
        updates[param] = param - step

    updates[t_prev] = t
    return updates
Exemplo n.º 27
0
 def volatility_update(x, vol, w, a, b):
     return at.sqrt(w + a * at.square(x) + b * at.square(vol))