def normal_lccdf(mu, sigma, x): z = (x - mu) / sigma return aet.switch( aet.gt(z, 1.0), aet.log(aet.erfcx(z / aet.sqrt(2.0)) / 2.0) - aet.sqr(z) / 2.0, aet.log1p(-aet.erfc(-z / aet.sqrt(2.0)) / 2.0), )
def normal_lcdf(mu, sigma, x): """Compute the log of the cumulative density function of the normal.""" z = (x - mu) / sigma return aet.switch( aet.lt(z, -1.0), aet.log(aet.erfcx(-z / aet.sqrt(2.0)) / 2.0) - aet.sqr(z) / 2.0, aet.log1p(-aet.erfc(z / aet.sqrt(2.0)) / 2.0), )
def curfft(inp, norm=None): r""" Performs the fast Fourier transform of a real-valued input on the GPU. The input must be a real-valued float32 variable of dimensions (m, ..., n). It performs FFTs of size (..., n) on m batches. The output is a GpuArray of dimensions (m, ..., n//2+1, 2). The second to last dimension of the output contains the n//2+1 non-trivial elements of the real-valued FFTs. The real and imaginary parts are stored as a pair of float32 arrays. Parameters ---------- inp Array of real-valued float32 of size (m, ..., n), containing m inputs of size (..., n). norm : {None, 'ortho', 'no_norm'} Normalization of transform. Following numpy, default *None* normalizes only the inverse transform by n, 'ortho' yields the unitary transform (:math:`1/\sqrt n` forward and inverse). In addition, 'no_norm' leaves the transform unnormalized. """ s = inp.shape[1:] cond_norm = _unitary(norm) scaling = 1 if cond_norm == "ortho": scaling = tt.sqrt(s.prod().astype("float32")) return curfft_op(inp, s) / scaling
def _build_prior(self, name, X, reparameterize=True, **kwargs): mu = self.mean_func(X) cov = stabilize(self.cov_func(X)) shape = infer_shape(X, kwargs.pop("shape", None)) if reparameterize: chi2 = pm.ChiSquared(name + "_chi2_", self.nu) v = pm.Normal(name + "_rotated_", mu=0.0, sigma=1.0, size=shape, **kwargs) f = pm.Deterministic(name, (at.sqrt(self.nu) / chi2) * (mu + cholesky(cov).dot(v))) else: f = pm.MvStudentT(name, nu=self.nu, mu=mu, cov=cov, size=shape, **kwargs) return f
def log_diff_normal_cdf(mu, sigma, x, y): """ Compute :math:`\\log(\\Phi(\frac{x - \\mu}{\\sigma}) - \\Phi(\frac{y - \\mu}{\\sigma}))` safely in log space. Parameters ---------- mu: float mean sigma: float std x: float y: float must be strictly less than x. Returns ------- log (\\Phi(x) - \\Phi(y)) """ x = (x - mu) / sigma / aet.sqrt(2.0) y = (y - mu) / sigma / aet.sqrt(2.0) # To stabilize the computation, consider these three regions: # 1) x > y > 0 => Use erf(x) = 1 - e^{-x^2} erfcx(x) and erf(y) =1 - e^{-y^2} erfcx(y) # 2) 0 > x > y => Use erf(x) = e^{-x^2} erfcx(-x) and erf(y) = e^{-y^2} erfcx(-y) # 3) x > 0 > y => Naive formula log( (erf(x) - erf(y)) / 2 ) works fine. return aet.log(0.5) + aet.switch( aet.gt(y, 0), -aet.square(y) + aet.log( aet.erfcx(y) - aet.exp(aet.square(y) - aet.square(x)) * aet.erfcx(x)), aet.switch( aet.lt(x, 0), # 0 > x > y -aet.square(x) + aet.log( aet.erfcx(-x) - aet.exp(aet.square(x) - aet.square(y)) * aet.erfcx(-y)), aet.log(aet.erf(x) - aet.erf(y)), # x >0 > y ), )
def full(self, X, Xs=None): X, Xs = self._slice(X, Xs) rx = self.lfunc(at.as_tensor_variable(X), self.args) if Xs is None: rz = self.lfunc(at.as_tensor_variable(X), self.args) r2 = self.square_dist(X, X) else: rz = self.lfunc(at.as_tensor_variable(Xs), self.args) r2 = self.square_dist(X, Xs) rx2 = at.reshape(at.square(rx), (-1, 1)) rz2 = at.reshape(at.square(rz), (1, -1)) return at.sqrt((2.0 * at.outer(rx, rz)) / (rx2 + rz2)) * at.exp(-1.0 * r2 / (rx2 + rz2))
def make_model(cls): with pm.Model() as model: sd_mu = np.array([1, 2, 3, 4, 5]) sd_dist = pm.LogNormal.dist(mu=sd_mu, sigma=sd_mu / 10.0, size=5) chol_packed = pm.LKJCholeskyCov("chol_packed", eta=3, n=5, sd_dist=sd_dist) chol = pm.expand_packed_triangular(5, chol_packed, lower=True) cov = at.dot(chol, chol.T) stds = at.sqrt(at.diag(cov)) pm.Deterministic("log_stds", at.log(stds)) corr = cov / stds[None, :] / stds[:, None] corr_entries_unit = (corr[np.tril_indices(5, -1)] + 1) / 2 pm.Deterministic("corr_entries_unit", corr_entries_unit) return model
def adagrad_window(loss_or_grads=None, params=None, learning_rate=0.001, epsilon=0.1, n_win=10): """Returns a function that returns parameter updates. Instead of accumulated estimate, uses running window Parameters ---------- loss_or_grads: symbolic expression or list of expressions A scalar loss expression, or a list of gradient expressions params: list of shared variables The variables to generate update expressions for learning_rate: float Learning rate. epsilon: float Offset to avoid zero-division in the normalizer of adagrad. n_win: int Number of past steps to calculate scales of parameter gradients. Returns ------- OrderedDict A dictionary mapping each parameter to its update expression """ if loss_or_grads is None and params is None: return partial(adagrad_window, **_get_call_kwargs(locals())) elif loss_or_grads is None or params is None: raise ValueError( "Please provide both `loss_or_grads` and `params` to get updates") grads = get_or_compute_grads(loss_or_grads, params) updates = OrderedDict() for param, grad in zip(params, grads): i = aesara.shared(pm.floatX(0)) i_int = i.astype("int32") value = param.get_value(borrow=True) accu = aesara.shared( np.zeros(value.shape + (n_win, ), dtype=value.dtype)) # Append squared gradient vector to accu_new accu_new = aet.set_subtensor(accu[..., i_int], grad**2) i_new = aet.switch((i + 1) < n_win, i + 1, 0) updates[accu] = accu_new updates[i] = i_new accu_sum = accu_new.sum(axis=-1) updates[param] = param - (learning_rate * grad / aet.sqrt(accu_sum + epsilon)) return updates
def cuirfft(inp, norm=None, is_odd=False): r""" Performs the inverse fast Fourier Transform with real-valued output on the GPU. The input is a variable of dimensions (m, ..., n//2+1, 2) with type float32 representing the non-trivial elements of m real-valued Fourier transforms of initial size (..., n). The real and imaginary parts are stored as a pair of float32 arrays. The output is a real-valued float32 variable of dimensions (m, ..., n) giving the m inverse FFTs. Parameters ---------- inp Array of float32 of size (m, ..., n//2+1, 2), containing m inputs with n//2+1 non-trivial elements on the last dimension and real and imaginary parts stored as separate arrays. norm : {None, 'ortho', 'no_norm'} Normalization of transform. Following numpy, default *None* normalizes only the inverse transform by n, 'ortho' yields the unitary transform (:math:`1/\sqrt n` forward and inverse). In addition, 'no_norm' leaves the transform unnormalized. is_odd : {True, False} Set to True to get a real inverse transform output with an odd last dimension of length (N-1)*2 + 1 for an input last dimension of length N. """ if is_odd not in (True, False): raise ValueError("Invalid value %s for id_odd, must be True or False" % is_odd) s = inp.shape[1:-1] if is_odd: s = tt.set_subtensor(s[-1], (s[-1] - 1) * 2 + 1) else: s = tt.set_subtensor(s[-1], (s[-1] - 1) * 2) cond_norm = _unitary(norm) scaling = 1 if cond_norm is None: scaling = s.prod().astype("float32") elif cond_norm == "ortho": scaling = tt.sqrt(s.prod().astype("float32")) return cuirfft_op(inp, s) / scaling
def logp(self, x): """ Calculate log-probability of EulerMaruyama distribution at specified value. Parameters ---------- x: numeric Value for which log-probability is calculated. Returns ------- TensorVariable """ xt = x[:-1] f, g = self.sde_fn(x[:-1], *self.sde_pars) mu = xt + self.dt * f sigma = at.sqrt(self.dt) * g return at.sum(Normal.dist(mu=mu, sigma=sigma).logp(x[1:]))
def _build_conditional(self, Xnew, pred_noise, diag): Xs, y, sigma = self.Xs, self.y, self.sigma # Old points X = cartesian(*Xs) delta = y - self.mean_func(X) Kns = [f(x) for f, x in zip(self.cov_funcs, Xs)] eigs_sep, Qs = zip(*map(eigh, Kns)) # Unzip QTs = list(map(at.transpose, Qs)) eigs = kron_diag(*eigs_sep) # Combine separate eigs if sigma is not None: eigs += sigma**2 # New points Km = self.cov_func(Xnew, diag=diag) Knm = self.cov_func(X, Xnew) Kmn = Knm.T # Build conditional mu alpha = kron_dot(QTs, delta) alpha = alpha / eigs[:, None] alpha = kron_dot(Qs, alpha) mu = at.dot(Kmn, alpha).ravel() + self.mean_func(Xnew) # Build conditional cov A = kron_dot(QTs, Knm) A = A / at.sqrt(eigs[:, None]) if diag: Asq = at.sum(at.square(A), 0) cov = Km - Asq if pred_noise: cov += sigma else: Asq = at.dot(A.T, A) cov = Km - Asq if pred_noise: cov += sigma * at.identity_like(cov) return mu, cov
def std(self): return at.sqrt(at.diag(self.cov))
def std(self): if self.batched: return at.sqrt(batched_diag(self.cov)) else: return at.sqrt(at.diag(self.cov))
def invprobit(x): return 0.5 * erfc(-x / sqrt(2.0))
def std_cdf(x): """ Calculates the standard normal cumulative distribution function. """ return 0.5 + 0.5 * aet.erf(x / aet.sqrt(2.0))
def adadelta(loss_or_grads=None, params=None, learning_rate=1.0, rho=0.95, epsilon=1e-6): r""" Adadelta updates Scale learning rates by the ratio of accumulated gradients to accumulated updates, see [1]_ and notes for further description. Parameters ---------- loss_or_grads : symbolic expression or list of expressions A scalar loss expression, or a list of gradient expressions params : list of shared variables The variables to generate update expressions for learning_rate : float or symbolic scalar The learning rate controlling the size of update steps rho : float or symbolic scalar Squared gradient moving average decay factor epsilon : float or symbolic scalar Small value added for numerical stability Returns ------- OrderedDict A dictionary mapping each parameter to its update expression Notes ----- rho should be between 0 and 1. A value of rho close to 1 will decay the moving average slowly and a value close to 0 will decay the moving average fast. rho = 0.95 and epsilon=1e-6 are suggested in the paper and reported to work for multiple datasets (MNIST, speech). In the paper, no learning rate is considered (so learning_rate=1.0). Probably best to keep it at this value. epsilon is important for the very first update (so the numerator does not become 0). Using the step size eta and a decay factor rho the learning rate is calculated as: .. math:: r_t &= \\rho r_{t-1} + (1-\\rho)*g^2\\\\ \\eta_t &= \\eta \\frac{\\sqrt{s_{t-1} + \\epsilon}} {\sqrt{r_t + \epsilon}}\\\\ s_t &= \\rho s_{t-1} + (1-\\rho)*(\\eta_t*g)^2 Optimizer can be called without both loss_or_grads and params in that case partial function is returned References ---------- .. [1] Zeiler, M. D. (2012): ADADELTA: An Adaptive Learning Rate Method. arXiv Preprint arXiv:1212.5701. Examples -------- >>> a = aesara.shared(1.) >>> b = a*2 >>> updates = adadelta(b, [a], learning_rate=.01) >>> isinstance(updates, dict) True >>> optimizer = adadelta(learning_rate=.01) >>> callable(optimizer) True >>> updates = optimizer(b, [a]) >>> isinstance(updates, dict) True """ if loss_or_grads is None and params is None: return partial(adadelta, **_get_call_kwargs(locals())) elif loss_or_grads is None or params is None: raise ValueError( "Please provide both `loss_or_grads` and `params` to get updates") grads = get_or_compute_grads(loss_or_grads, params) updates = OrderedDict() # Using aesara constant to prevent upcasting of float32 one = aet.constant(1) for param, grad in zip(params, grads): value = param.get_value(borrow=True) # accu: accumulate gradient magnitudes accu = aesara.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable) # delta_accu: accumulate update magnitudes (recursively!) delta_accu = aesara.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable) # update accu (as in rmsprop) accu_new = rho * accu + (one - rho) * grad**2 updates[accu] = accu_new # compute parameter update, using the 'old' delta_accu update = grad * aet.sqrt(delta_accu + epsilon) / aet.sqrt(accu_new + epsilon) updates[param] = param - learning_rate * update # update delta_accu (as accu, but accumulating updates) delta_accu_new = rho * delta_accu + (one - rho) * update**2 updates[delta_accu] = delta_accu_new return updates
def rmsprop(loss_or_grads=None, params=None, learning_rate=1.0, rho=0.9, epsilon=1e-6): """RMSProp updates Scale learning rates by dividing with the moving average of the root mean squared (RMS) gradients. See [1]_ for further description. Parameters ---------- loss_or_grads: symbolic expression or list of expressions A scalar loss expression, or a list of gradient expressions params: list of shared variables The variables to generate update expressions for learning_rate: float or symbolic scalar The learning rate controlling the size of update steps rho: float or symbolic scalar Gradient moving average decay factor epsilon: float or symbolic scalar Small value added for numerical stability Returns ------- OrderedDict A dictionary mapping each parameter to its update expression Notes ----- `rho` should be between 0 and 1. A value of `rho` close to 1 will decay the moving average slowly and a value close to 0 will decay the moving average fast. Using the step size :math:`\\eta` and a decay factor :math:`\\rho` the learning rate :math:`\\eta_t` is calculated as: .. math:: r_t &= \\rho r_{t-1} + (1-\\rho)*g^2\\\\ \\eta_t &= \\frac{\\eta}{\\sqrt{r_t + \\epsilon}} Optimizer can be called without both loss_or_grads and params in that case partial function is returned References ---------- .. [1] Tieleman, aet. and Hinton, G. (2012): Neural Networks for Machine Learning, Lecture 6.5 - rmsprop. Coursera. http://www.youtube.com/watch?v=O3sxAc4hxZU (formula @5:20) Examples -------- >>> a = aesara.shared(1.) >>> b = a*2 >>> updates = rmsprop(b, [a], learning_rate=.01) >>> isinstance(updates, dict) True >>> optimizer = rmsprop(learning_rate=.01) >>> callable(optimizer) True >>> updates = optimizer(b, [a]) >>> isinstance(updates, dict) True """ if loss_or_grads is None and params is None: return partial(rmsprop, **_get_call_kwargs(locals())) elif loss_or_grads is None or params is None: raise ValueError( "Please provide both `loss_or_grads` and `params` to get updates") grads = get_or_compute_grads(loss_or_grads, params) updates = OrderedDict() # Using aesara constant to prevent upcasting of float32 one = aet.constant(1) for param, grad in zip(params, grads): value = param.get_value(borrow=True) accu = aesara.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable) accu_new = rho * accu + (one - rho) * grad**2 updates[accu] = accu_new updates[param] = param - (learning_rate * grad / aet.sqrt(accu_new + epsilon)) return updates
def adagrad(loss_or_grads=None, params=None, learning_rate=1.0, epsilon=1e-6): """Adagrad updates Scale learning rates by dividing with the square root of accumulated squared gradients. See [1]_ for further description. Parameters ---------- loss_or_grads: symbolic expression or list of expressions A scalar loss expression, or a list of gradient expressions params: list of shared variables The variables to generate update expressions for learning_rate: float or symbolic scalar The learning rate controlling the size of update steps epsilon: float or symbolic scalar Small value added for numerical stability Returns ------- OrderedDict A dictionary mapping each parameter to its update expression Notes ----- Using step size eta Adagrad calculates the learning rate for feature i at time step t as: .. math:: \\eta_{t,i} = \\frac{\\eta} {\\sqrt{\\sum^t_{t^\\prime} g^2_{t^\\prime,i}+\\epsilon}} g_{t,i} as such the learning rate is monotonically decreasing. Epsilon is not included in the typical formula, see [2]_. Optimizer can be called without both loss_or_grads and params in that case partial function is returned References ---------- .. [1] Duchi, J., Hazan, E., & Singer, Y. (2011): Adaptive subgradient methods for online learning and stochastic optimization. JMLR, 12:2121-2159. .. [2] Chris Dyer: Notes on AdaGrad. http://www.ark.cs.cmu.edu/cdyer/adagrad.pdf Examples -------- >>> a = aesara.shared(1.) >>> b = a*2 >>> updates = adagrad(b, [a], learning_rate=.01) >>> isinstance(updates, dict) True >>> optimizer = adagrad(learning_rate=.01) >>> callable(optimizer) True >>> updates = optimizer(b, [a]) >>> isinstance(updates, dict) True """ if loss_or_grads is None and params is None: return partial(adagrad, **_get_call_kwargs(locals())) elif loss_or_grads is None or params is None: raise ValueError( "Please provide both `loss_or_grads` and `params` to get updates") grads = get_or_compute_grads(loss_or_grads, params) updates = OrderedDict() for param, grad in zip(params, grads): value = param.get_value(borrow=True) accu = aesara.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable) accu_new = accu + grad**2 updates[accu] = accu_new updates[param] = param - (learning_rate * grad / aet.sqrt(accu_new + epsilon)) return updates
def total_norm_constraint(tensor_vars, max_norm, epsilon=1e-7, return_norm=False): """Rescales a list of tensors based on their combined norm If the combined norm of the input tensors exceeds the threshold then all tensors are rescaled such that the combined norm is equal to the threshold. Scaling the norms of the gradients is often used when training recurrent neural networks [1]_. Parameters ---------- tensor_vars: List of TensorVariables. Tensors to be rescaled. max_norm: float Threshold value for total norm. epsilon: scalar, optional Value used to prevent numerical instability when dividing by very small or zero norms. return_norm: bool If true the total norm is also returned. Returns ------- tensor_vars_scaled: list of TensorVariables The scaled tensor variables. norm: Aesara scalar The combined norms of the input variables prior to rescaling, only returned if ``return_norms=True``. Examples -------- >>> from lasagne.layers import InputLayer, DenseLayer >>> import lasagne >>> from lasagne.updates import sgd, total_norm_constraint >>> x = aet.matrix() >>> y = aet.ivector() >>> l_in = InputLayer((5, 10)) >>> l1 = DenseLayer(l_in, num_units=7, nonlinearity=aet.nnet.softmax) >>> output = lasagne.layers.get_output(l1, x) >>> cost = aet.mean(aet.nnet.categorical_crossentropy(output, y)) >>> all_params = lasagne.layers.get_all_params(l1) >>> all_grads = aet.grad(cost, all_params) >>> scaled_grads = total_norm_constraint(all_grads, 5) >>> updates = sgd(scaled_grads, all_params, learning_rate=0.1) Notes ----- The total norm can be used to monitor training. References ---------- .. [1] Sutskever, I., Vinyals, O., & Le, Q. V. (2014): Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Systems (pp. 3104-3112). """ norm = aet.sqrt(sum(aet.sum(tensor**2) for tensor in tensor_vars)) dtype = np.dtype(aesara.config.floatX).type target_norm = aet.clip(norm, 0, dtype(max_norm)) multiplier = target_norm / (dtype(epsilon) + norm) tensor_vars_scaled = [step * multiplier for step in tensor_vars] if return_norm: return tensor_vars_scaled, norm else: return tensor_vars_scaled
def euclidean_dist(self, X, Xs): r2 = self.square_dist(X, Xs) return at.sqrt(r2 + 1e-12)
def test_batch_normalization_train(): for axes in ("per-activation", "spatial", (1, 2, 3, 4)): for vartype in (tensor5, tensor3, vector): x, scale, bias, running_mean, running_var = (vartype(n) for n in ( "x", "scale", "bias", "running_mean", "running_var")) ndim = x.ndim eps = 5e-3 # some non-standard value to test if it's used running_average_factor = 0.3 # remove non-existing axes if isinstance(axes, tuple): axes = tuple(i for i in axes if i < ndim) if len(axes) == 0: continue # forward pass ( out, x_mean, x_invstd, out_running_mean, out_running_var, ) = batchnorm.batch_normalization_train( x, scale, bias, axes, eps, running_average_factor, running_mean, running_var, ) # reference forward pass if axes == "per-activation": axes2 = (0, ) elif axes == "spatial": axes2 = (0, ) + tuple(range(2, ndim)) else: axes2 = axes x_mean2 = x.mean(axis=axes2, keepdims=True) x_var2 = x.var(axis=axes2, keepdims=True) x_invstd2 = aet.reciprocal(aet.sqrt(x_var2 + eps)) scale2 = aet.addbroadcast(scale, *axes2) bias2 = aet.addbroadcast(bias, *axes2) out2 = (x - x_mean2) * (scale2 * x_invstd2) + bias2 m = aet.cast( aet.prod(x.shape) / aet.prod(scale.shape), aesara.config.floatX) out_running_mean2 = (running_mean * (1 - running_average_factor) + x_mean2 * running_average_factor) out_running_var2 = (running_var * (1 - running_average_factor) + (m / (m - 1)) * x_var2 * running_average_factor) # backward pass dy = vartype("dy") grads = aet.grad(None, wrt=[x, scale, bias], known_grads={out: dy}) # reference backward pass grads2 = aet.grad(None, wrt=[x, scale, bias], known_grads={out2: dy}) # second-order backward pass dx = vartype("dinputs") dscale = vartype("dscale") dbias = vartype("dbias") grad_grads = aet.grad( None, wrt=[x, dy, scale], known_grads=OrderedDict({ grads[0]: dx, grads[1]: dscale, grads[2]: dbias }), consider_constant=[ x, dy, scale, bias, x_mean, x_invstd, running_mean, running_var, ], return_disconnected="zero", ) # reference second-order backward pass grad_grads2 = aet.grad( None, wrt=[x, dy, scale], known_grads=OrderedDict({ grads2[0]: dx, grads2[1]: dscale, grads2[2]: dbias }), consider_constant=[ x, dy, scale, bias, x_mean2, x_var2, running_mean, running_var, ], return_disconnected="zero", ) # compile f = aesara.function( [ x, scale, bias, running_mean, running_var, dy, dx, dscale, dbias ], [ out, x_mean, x_invstd, out_running_mean, out_running_var, out2, x_mean2, x_invstd2, out_running_mean2, out_running_var2, ] + grads + grads2 + grad_grads + grad_grads2, ) # check if the abstract Ops have been replaced assert not any([ isinstance( n.op, ( batchnorm.AbstractBatchNormTrain, batchnorm.AbstractBatchNormInference, batchnorm.AbstractBatchNormTrainGrad, ), ) for n in f.maker.fgraph.toposort() ]) # run for data_shape in ((5, 10, 30, 40, 10), (4, 3, 1, 1, 1), (2, 3, 5, 5, 5)): data_shape = data_shape[:ndim] param_shape = tuple(1 if d in axes2 else s for d, s in enumerate(data_shape)) rng = np.random.default_rng(1234) X = 4 + 3 * rng.random(data_shape).astype(aesara.config.floatX) Dy = -1 + 2 * rng.random(data_shape).astype( aesara.config.floatX) Scale = rng.random(param_shape).astype(aesara.config.floatX) Bias = rng.random(param_shape).astype(aesara.config.floatX) Running_mean = rng.random(param_shape).astype( aesara.config.floatX) Running_var = rng.random(param_shape).astype( aesara.config.floatX) Dx = 4 + 3 * rng.random(data_shape).astype( aesara.config.floatX) Dscale = -1 + 2 * rng.random(param_shape).astype( aesara.config.floatX) Dbias = rng.random(param_shape).astype(aesara.config.floatX) outputs = f(X, Scale, Bias, Running_mean, Running_var, Dy, Dx, Dscale, Dbias) # compare outputs utt.assert_allclose(outputs[0], outputs[0 + 5]) # out utt.assert_allclose(outputs[1], outputs[1 + 5]) # mean utt.assert_allclose(outputs[2], outputs[2 + 5]) # invstd utt.assert_allclose(outputs[3], outputs[3 + 5]) # running_mean utt.assert_allclose(np.nan_to_num(outputs[4]), np.nan_to_num(outputs[4 + 5])) # running_var # compare gradients utt.assert_allclose(outputs[10], outputs[10 + 3], atol=1e-4) # dx utt.assert_allclose(outputs[11], outputs[11 + 3], rtol=2e-4, atol=1e-4) # dscale utt.assert_allclose(outputs[12], outputs[12 + 3]) # dbias # compare second-order gradients utt.assert_allclose(outputs[16], outputs[16 + 3], atol=1e-4) # ddx utt.assert_allclose(outputs[17], outputs[17 + 3]) # ddy utt.assert_allclose(outputs[18], outputs[18 + 3], rtol=3e-4, atol=1e-4) # ddscale
def test_batch_normalization_test(): for axes in ("per-activation", "spatial", (1, 2, 3, 4)): for vartype in (tensor5, tensor3, vector): x, scale, bias, mean, var = (vartype(n) for n in ("x", "scale", "bias", "mean", "var")) ndim = x.ndim eps = 5e-3 # some non-standard value to test if it's used # remove non-existing axes if isinstance(axes, tuple): axes = tuple(i for i in axes if i < ndim) if len(axes) == 0: continue # forward pass out = batchnorm.batch_normalization_test(x, scale, bias, mean, var, axes, eps) # reference forward pass if axes == "per-activation": axes2 = (0, ) elif axes == "spatial": axes2 = (0, ) + tuple(range(2, ndim)) else: axes2 = axes scale2, bias2, mean2, var2 = (aet.addbroadcast(t, *axes2) for t in (scale, bias, mean, var)) out2 = (x - mean2) * (scale2 / aet.sqrt(var2 + eps)) + bias2 # backward pass dy = vartype("dy") grads = aet.grad(None, wrt=[x, scale, bias, mean, var], known_grads={out: dy}) # reference backward pass grads2 = aet.grad(None, wrt=[x, scale, bias, mean, var], known_grads={out2: dy}) # compile f = aesara.function([x, scale, bias, mean, var, dy], [out, out2] + grads + grads2) # check if the abstract Ops have been replaced assert not any([ isinstance( n.op, ( batchnorm.AbstractBatchNormTrain, batchnorm.AbstractBatchNormInference, batchnorm.AbstractBatchNormTrainGrad, ), ) for n in f.maker.fgraph.toposort() ]) # run for data_shape in ((10, 20, 30, 40, 10), (4, 3, 1, 1, 1), (1, 1, 5, 5, 5)): data_shape = data_shape[:ndim] param_shape = tuple(1 if d in axes2 else s for d, s in enumerate(data_shape)) rng = np.random.default_rng(1234) X = 4 + 3 * rng.random(data_shape).astype(aesara.config.floatX) Dy = -1 + 2 * rng.random(data_shape).astype( aesara.config.floatX) Scale = rng.random(param_shape).astype(aesara.config.floatX) Bias = rng.random(param_shape).astype(aesara.config.floatX) Mean = rng.random(param_shape).astype(aesara.config.floatX) Var = rng.random(param_shape).astype(aesara.config.floatX) outputs = f(X, Scale, Bias, Mean, Var, Dy) # compare outputs utt.assert_allclose(outputs[0], outputs[1]) # out # compare gradients utt.assert_allclose(outputs[2], outputs[2 + 5], atol=4e-5) # dx utt.assert_allclose(outputs[3], outputs[3 + 5], atol=4e-5) # dscale utt.assert_allclose(outputs[4], outputs[4 + 5]) # dbias utt.assert_allclose(outputs[5], outputs[5 + 5]) # dmean utt.assert_allclose(outputs[6], outputs[6 + 5], rtol=2e-3, atol=4e-5) # dvar
def norm_constraint(tensor_var, max_norm, norm_axes=None, epsilon=1e-7): """Max weight norm constraints and gradient clipping This takes a TensorVariable and rescales it so that incoming weight norms are below a specified constraint value. Vectors violating the constraint are rescaled so that they are within the allowed range. Parameters ---------- tensor_var: TensorVariable Aesara expression for update, gradient, or other quantity. max_norm: scalar This value sets the maximum allowed value of any norm in `tensor_var`. norm_axes: sequence (list or tuple) The axes over which to compute the norm. This overrides the default norm axes defined for the number of dimensions in `tensor_var`. When this is not specified and `tensor_var` is a matrix (2D), this is set to `(0,)`. If `tensor_var` is a 3D, 4D or 5D tensor, it is set to a tuple listing all axes but axis 0. The former default is useful for working with dense layers, the latter is useful for 1D, 2D and 3D convolutional layers. (Optional) epsilon: scalar, optional Value used to prevent numerical instability when dividing by very small or zero norms. Returns ------- TensorVariable Input `tensor_var` with rescaling applied to weight vectors that violate the specified constraints. Examples -------- >>> param = aesara.shared( ... np.random.randn(100, 200).astype(aesara.config.floatX)) >>> update = param + 100 >>> update = norm_constraint(update, 10) >>> func = aesara.function([], [], updates=[(param, update)]) >>> # Apply constrained update >>> _ = func() >>> from lasagne.utils import compute_norms >>> norms = compute_norms(param.get_value()) >>> np.isclose(np.max(norms), 10) True Notes ----- When `norm_axes` is not specified, the axes over which the norm is computed depend on the dimensionality of the input variable. If it is 2D, it is assumed to come from a dense layer, and the norm is computed over axis 0. If it is 3D, 4D or 5D, it is assumed to come from a convolutional layer and the norm is computed over all trailing axes beyond axis 0. For other uses, you should explicitly specify the axes over which to compute the norm using `norm_axes`. """ ndim = tensor_var.ndim if norm_axes is not None: sum_over = tuple(norm_axes) elif ndim == 2: # DenseLayer sum_over = (0, ) elif ndim in [3, 4, 5]: # Conv{1,2,3}DLayer sum_over = tuple(range(1, ndim)) else: raise ValueError("Unsupported tensor dimensionality {}." "Must specify `norm_axes`".format(ndim)) dtype = np.dtype(aesara.config.floatX).type norms = aet.sqrt(aet.sum(aet.sqr(tensor_var), axis=sum_over, keepdims=True)) target_norms = aet.clip(norms, 0, dtype(max_norm)) constrained_output = tensor_var * (target_norms / (dtype(epsilon) + norms)) return constrained_output
def normal( self, size, avg=0.0, std=1.0, ndim=None, dtype=None, nstreams=None, truncate=False, **kwargs, ): """ Sample a tensor of values from a normal distribution. Parameters ---------- size : int_vector_like Array dimensions for the output tensor. avg : float_like, optional The mean value for the truncated normal to sample from (defaults to 0.0). std : float_like, optional The standard deviation for the truncated normal to sample from (defaults to 1.0). truncate : bool, optional Truncates the normal distribution at 2 standard deviations if True (defaults to False). When this flag is set, the standard deviation of the result will be less than the one specified. ndim : int, optional The number of dimensions for the output tensor (defaults to None). This argument is necessary if the size argument is ambiguous on the number of dimensions. dtype : str, optional The data-type for the output tensor. If not specified, the dtype is inferred from avg and std, but it is at least as precise as floatX. kwargs Other keyword arguments for random number generation (see uniform). Returns ------- samples : TensorVariable A Aesara tensor of samples randomly drawn from a normal distribution. """ size = _check_size(size) avg = undefined_grad(as_tensor_variable(avg)) std = undefined_grad(as_tensor_variable(std)) if dtype is None: dtype = scal.upcast(config.floatX, avg.dtype, std.dtype) avg = tensor.cast(avg, dtype=dtype) std = tensor.cast(std, dtype=dtype) # generate even number of uniform samples # Do manual constant folding to lower optiimizer work. if isinstance(size, aesara.Constant): n_odd_samples = size.prod(dtype="int64") else: n_odd_samples = tensor.prod(size, dtype="int64") n_even_samples = n_odd_samples + n_odd_samples % 2 uniform = self.uniform( (n_even_samples, ), low=0.0, high=1.0, ndim=1, dtype=dtype, nstreams=nstreams, **kwargs, ) # box-muller transform u1 = uniform[:n_even_samples // 2] u2 = uniform[n_even_samples // 2:] r = tensor.sqrt(-2.0 * tensor.log(u1)) theta = np.array(2.0 * np.pi, dtype=dtype) * u2 cos_theta, sin_theta = tensor.cos(theta), tensor.sin(theta) z0 = r * cos_theta z1 = r * sin_theta if truncate: # use valid samples to_fix0 = (z0 < -2.0) | (z0 > 2.0) to_fix1 = (z1 < -2.0) | (z1 > 2.0) z0_valid = z0[tensor.nonzero(~to_fix0)] z1_valid = z1[tensor.nonzero(~to_fix1)] # re-sample invalid samples to_fix0 = tensor.nonzero(to_fix0)[0] to_fix1 = tensor.nonzero(to_fix1)[0] n_fix_samples = to_fix0.size + to_fix1.size lower = tensor.constant(1.0 / np.e**2, dtype=dtype) u_fix = self.uniform( (n_fix_samples, ), low=lower, high=1.0, ndim=1, dtype=dtype, nstreams=nstreams, **kwargs, ) r_fix = tensor.sqrt(-2.0 * tensor.log(u_fix)) z0_fixed = r_fix[:to_fix0.size] * cos_theta[to_fix0] z1_fixed = r_fix[to_fix0.size:] * sin_theta[to_fix1] # pack everything together to a useful result norm_samples = tensor.join(0, z0_valid, z0_fixed, z1_valid, z1_fixed) else: norm_samples = tensor.join(0, z0, z1) if isinstance(n_odd_samples, aesara.Variable): samples = norm_samples[:n_odd_samples] elif n_odd_samples % 2 == 1: samples = norm_samples[:-1] else: samples = norm_samples samples = tensor.reshape(samples, newshape=size, ndim=ndim) samples *= std samples += avg return samples
def probit(p): return -sqrt(2.0) * erfcinv(2.0 * p)
def adam(loss_or_grads=None, params=None, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8): """Adam updates Adam updates implemented as in [1]_. Parameters ---------- loss_or_grads: symbolic expression or list of expressions A scalar loss expression, or a list of gradient expressions params: list of shared variables The variables to generate update expressions for learning_rate: float Learning rate beta1: float Exponential decay rate for the first moment estimates. beta2: float Exponential decay rate for the second moment estimates. epsilon: float Constant for numerical stability. Returns ------- OrderedDict A dictionary mapping each parameter to its update expression Notes ----- The paper [1]_ includes an additional hyperparameter lambda. This is only needed to prove convergence of the algorithm and has no practical use (personal communication with the authors), it is therefore omitted here. Optimizer can be called without both loss_or_grads and params in that case partial function is returned References ---------- .. [1] Kingma, Diederik, and Jimmy Ba (2014): Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980. Examples -------- >>> a = aesara.shared(1.) >>> b = a*2 >>> updates = adam(b, [a], learning_rate=.01) >>> isinstance(updates, dict) True >>> optimizer = adam(learning_rate=.01) >>> callable(optimizer) True >>> updates = optimizer(b, [a]) >>> isinstance(updates, dict) True """ if loss_or_grads is None and params is None: return partial(adam, **_get_call_kwargs(locals())) elif loss_or_grads is None or params is None: raise ValueError( "Please provide both `loss_or_grads` and `params` to get updates") all_grads = get_or_compute_grads(loss_or_grads, params) t_prev = aesara.shared(pm.aesaraf.floatX(0.0)) updates = OrderedDict() # Using aesara constant to prevent upcasting of float32 one = aet.constant(1) t = t_prev + 1 a_t = learning_rate * aet.sqrt(one - beta2**t) / (one - beta1**t) for param, g_t in zip(params, all_grads): value = param.get_value(borrow=True) m_prev = aesara.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable) v_prev = aesara.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable) m_t = beta1 * m_prev + (one - beta1) * g_t v_t = beta2 * v_prev + (one - beta2) * g_t**2 step = a_t * m_t / (aet.sqrt(v_t) + epsilon) updates[m_prev] = m_t updates[v_prev] = v_t updates[param] = param - step updates[t_prev] = t return updates
def volatility_update(x, vol, w, a, b): return at.sqrt(w + a * at.square(x) + b * at.square(vol))