def SchemeUpwind(u, A, omega, D, rhs, bc):
    """
    Discretization of -Tr(A(x) hess u(x)) + \| grad u(x) - omega(x) \|_D(x)^2 - rhs,
    with Dirichlet boundary conditions, using upwind finite differences for the first order part.
    The scheme is degenerate elliptic if A and D are positive definite. 
    """
    # Compute the decompositions (here offset_e = offset_f)
    nothing = (np.full((0, ), 0.), np.full((2, 0),
                                           0))  # empty coefs and offsets
    mu, offset_e = nothing if A is None else Selling.Decomposition(A)
    nu, offset_f = nothing if D is None else Selling.Decomposition(D)
    omega_f = lp.dot_VA(omega, offset_f.astype(float))

    # First and second order finite differences
    maxi = np.maximum
    mu, nu, omega_f = (bc.as_field(e) for e in (mu, nu, omega_f))

    dup = bc.DiffUpwind(u, offset_f)
    dum = bc.DiffUpwind(u, -offset_f)
    dup[...,
        bc.not_interior] = 0.  # Placeholder values to silence NaN warnings
    dum[..., bc.not_interior] = 0.

    d2u = bc.Diff2(u, offset_e)

    # Scheme in the interior
    du = maxi(0., maxi(omega_f - dup, -omega_f - dum))
    residue = -lp.dot_VV(mu, d2u) + lp.dot_VV(nu, du**2) - rhs

    # Placeholders outside domain
    return np.where(bc.interior, residue, u - bc.grid_values)
Exemplo n.º 2
0
def SchemeCentered(u, cst, mult, omega, diff, bc, ret_hmax=False):
    """Discretization of a linear non-divergence form second order PDE
        cst + mult u + <omega,grad u>- tr(diff hess(u)) = 0
        Second order accurate, centered yet monotone finite differences are used for <omega,grad u>
        - bc : boundary conditions. 
        - ret_hmax : return the largest grid scale for which monotony holds
    """
    # Decompose the tensor field
    coefs2, offsets = Selling.Decomposition(diff)

    # Decompose the vector field
    scals = lp.dot_VA(lp.solve_AV(diff, omega), offsets.astype(float))
    coefs1 = coefs2 * scals
    if ret_hmax: return 2. / norm(scals, ord=np.inf)

    # Compute the first and second order finite differences
    du = bc.DiffCentered(u, offsets)
    d2u = bc.Diff2(u, offsets)

    # In interior : cst + mult u + <omega,grad u>- tr(diff hess(u)) = 0
    coefs1, coefs2 = (bc.as_field(e) for e in (coefs1, coefs2))
    residue = cst + mult * u + lp.dot_VV(coefs1, du) - lp.dot_VV(coefs2, d2u)

    # On boundary : u-bc = 0
    return np.where(bc.interior, residue, u - bc.grid_values)
def MinimizeTrace_Opt(u, alpha, bc, oracle=None):
    if oracle is None: return MinimizeTrace(u, alpha, bc)

    # The oracle contains the optimal angles
    diffs = Diff(alpha, oracle.squeeze(axis=0))
    coefs, sb = Selling.Decomposition(diffs)
    value = lp.dot_VV(coefs, bc.Diff2(u, sb))
    return value, oracle
Exemplo n.º 4
0
def Gradient(u, A, bc, decomp=None):
    """
    Approximates grad u(x), using finite differences along the axes of A.
    """
    coefs, offsets = Selling.Decomposition(A) if decomp is None else decomp
    du = bc.DiffCentered(u, offsets)
    AGrad = lp.dot_AV(offsets.astype(float),
                      (coefs * du))  # Approximates A * grad u
    return lp.solve_AV(A, AGrad)  # Approximates A^{-1} (A * grad u) = grad u
def SchemeSampling(u, diffs, beta, bc):
    # Tensor decomposition
    coefs, offsets = Selling.Decomposition(diffs)

    # Numerical scheme
    coefs = bc.as_field(coefs)
    residue = beta - (coefs * bc.Diff2(u, offsets)).sum(0).min(0)

    # Boundary conditions
    return np.where(bc.interior, residue, u - bc.grid_values)
Exemplo n.º 6
0
def SchemeNonlinear(u, x, f, bc):
    coef, offsets = Selling.Decomposition(D(x))
    du = bc.DiffCentered(u, offsets)
    d2u = bc.Diff2(u, offsets)
    p = lp.dot_AV(lp.inverse(D(x)), np.sum(coef * du * offsets, axis=1))
    return np.where(
        bc.interior,
        -1 / 2 * lp.dot_VV(omega(x), p)**2 - lp.dot_VV(coef, d2u) - f,
        u - bc.grid_values,
    )
def AnglesAndSuperbases(D, maxiter=200):
    sb = Selling.CanonicalSuperbase(2).astype(int)
    thetas = []
    superbases = []
    theta = 0
    for i in range(maxiter):
        thetas.append(theta)
        if (theta >= np.pi): break
        superbases.append(sb)
        theta, sb = NextAngleAndSuperbase(theta, sb, D)
    return np.array(thetas), np.stack(superbases, axis=2)
Exemplo n.º 8
0
def StencilForConditioning(cond):
    V3 = Selling.SuperbasesForConditioning(cond)
    offsets = V3.reshape((2, -1))

    # Make offsets positive for the lexicographic order, inversing their sign if needed.
    offsets[:, offsets[0] < 0] *= -1
    offsets[:, np.logical_and(offsets[0] == 0, offsets[1] < 0)] *= -1

    V1, indices = np.unique(offsets, axis=1, return_inverse=True)
    V3_indices = indices.reshape(V3.shape[1:])
    V2_indices = np.unique(
        np.sort(
            np.concatenate(
                (V3_indices[[0, 1]], V3_indices[[0, 2]], V3_indices[[1, 2]]),
                axis=1),
            axis=0,
        ),
        axis=1,
    )
    V2 = V1[:, V2_indices]

    Q = np.zeros((3, 3, V3.shape[2]))
    w = np.zeros((3, V3.shape[2]))

    for i in range(3):
        Q[i, i] = (lp.dot_VV(V3[:, (i + 1) % 3], V3[:, (i + 1) % 3]) *
                   lp.dot_VV(V3[:, (i + 2) % 3], V3[:, (i + 2) % 3]) / 4)
        Q[i, (i + 1) % 3] = (lp.dot_VV(V3[:, i], V3[:, (i + 1) % 3]) *
                             lp.dot_VV(V3[:,
                                          (i + 2) % 3], V3[:,
                                                           (i + 2) % 3]) / 4)
        Q[i, (i + 2) % 3] = (lp.dot_VV(V3[:, i], V3[:, (i + 2) % 3]) *
                             lp.dot_VV(V3[:,
                                          (i + 1) % 3], V3[:,
                                                           (i + 1) % 3]) / 4)
        w[i] = -lp.dot_VV(V3[:, (i + 1) % 3], V3[:, (i + 2) % 3]) / 2

    omega0 = 1 / (lp.dot_VV(V2[:, 0], V2[:, 0]) *
                  lp.dot_VV(V2[:, 1], V2[:, 1]))
    omega1 = 1 / (2 * np.stack(
        [lp.dot_VV(V2[:, 0], V2[:, 0]), -lp.dot_VV(V2[:, 1], V2[:, 1])]))
    omega2 = 1 / (2 * np.stack(
        [lp.dot_VV(V2[:, 0], V2[:, 0]),
         lp.dot_VV(V2[:, 1], V2[:, 1])]))

    return Stencil(V1, V2, V2_indices, V3, V3_indices, Q, w, omega0, omega1,
                   omega2)
def SchemeSampling_OptInner(u, diffs, bc, oracle=None):
    # Select the active tensors, if they are known
    if not (oracle is None):
        diffs = np.take_along_axis(diffs,
                                   np.broadcast_to(
                                       oracle,
                                       diffs.shape[:2] + (1, ) + oracle.shape),
                                   axis=2)

    print("Has AD information :", ad.is_ad(u),
          ". Number active tensors per point :", diffs.shape[2])

    # Tensor decomposition
    coefs, offsets = Selling.Decomposition(diffs)

    # Return the minimal value, and the minimizing index
    return ad.min_argmin(lp.dot_VV(coefs, bc.Diff2(u, offsets)), axis=0)
Exemplo n.º 10
0
def SchemeLinear(u, x, f, bc):
    coef, offsets = Selling.Decomposition(D(x))

    # coef_min = np.min(coef)
    # offsets_norm2 = lp.dot_VV(offsets, offsets)
    # offsets_max2 = np.max(np.where(coef < 1e-13, 0, offsets_norm2))
    # print(f"h: {bc.gridscale}, c: {coef_min}, e2: {offsets_max2}")

    du = bc.DiffCentered(u, offsets)
    d2u = bc.Diff2(u, offsets)
    return np.where(
        bc.interior,
        -lp.dot_VAV(omega(x), lp.inverse(D(x)),
                    np.sum(coef * du * offsets, axis=1)) -
        lp.dot_VV(coef, d2u) - f,
        u - bc.grid_values,
    )
Exemplo n.º 11
0
def SchemeLaxFriedrichs(u, A, F, bc):
    """
    Discretization of - Tr(A(x) hess u(x)) + F(grad u(x)) - 1 = 0,
    with Dirichlet boundary conditions. The scheme is second order,
    and degenerate elliptic under suitable assumptions.
    """
    # Compute the tensor decomposition
    coefs, offsets = Selling.Decomposition(A)
    A, coefs, offsets = (bc.as_field(e) for e in (A, coefs, offsets))

    # Obtain the first and second order finite differences
    grad = Gradient(u, A, bc, decomp=(coefs, offsets))
    d2u = bc.Diff2(u, offsets)

    # Numerical scheme in interior
    residue = -lp.dot_VV(coefs, d2u) + F(grad) - 1.

    # Placeholders outside domain
    return ad.where(bc.interior, residue, u - bc.grid_values)
Exemplo n.º 12
0
def SchemeUpwind(u, cst, mult, omega, diff, bc):
    """Discretization of a linear non-divergence form second order PDE
        cst + mult u + <omega,grad u>- tr(diff hess(u)) = 0
        First order accurate, upwind finite differences are used for <omega,grad u>
        - bc : boundary conditions. 
    """
    # Decompose the tensor field
    coefs2, offsets2 = Selling.Decomposition(diff)
    omega, coefs2 = (bc.as_field(e) for e in (omega, coefs2))

    # Decompose the vector field
    coefs1 = -np.abs(omega)
    basis = bc.as_field(np.eye(len(omega)))
    offsets1 = -np.sign(omega) * basis

    # Compute the first and second order finite differences
    du = bc.DiffUpwind(u, offsets1.astype(int))
    d2u = bc.Diff2(u, offsets2)

    # In interior : cst + mult u + <omega,grad u>- tr(diff hess(u)) = 0
    residue = cst + mult * u + lp.dot_VV(coefs1, du) - lp.dot_VV(coefs2, d2u)

    # On boundary : u-bc = 0
    return np.where(bc.interior, residue, u - bc.grid_values)