def test_stream_predict_component(self): batch_example_meta = af.register_example( name='batch_train_example', support_type=ExampleSupportType.EXAMPLE_BOTH) model_meta = af.register_model(model_name='mnist_model', model_type=ModelType.SAVED_MODEL) stream_predict_example_meta = af.register_example( name='stream_predict_example', support_type=ExampleSupportType.EXAMPLE_STREAM) stream_output_file = get_file_dir(__file__) + '/stream_predict' evaluate_output = af.register_artifact(name='stream_evaluate', batch_uri=stream_output_file) stream_predict_result_example_meta = af.register_example( name='stream_result_example', support_type=ExampleSupportType.EXAMPLE_STREAM, stream_uri=stream_output_file) if os.path.exists(stream_output_file): os.remove(stream_output_file) with af.config( af.BaseJobConfig(platform='local', engine='python', job_name='stream_predict')): batch_example = af.read_example( example_info=batch_example_meta, executor=PythonObjectExecutor( python_object=ReadBatchExample())) stream_predict_example = af.read_example( example_info=stream_predict_example_meta, executor=PythonObjectExecutor( python_object=ReadStreamExample())) batch_train = af.train(input_data_list=[batch_example], executor=PythonObjectExecutor( python_object=TrainBatchMnistModel()), model_info=model_meta) stream_predict = af.predict( input_data_list=[stream_predict_example], model_info=model_meta, executor=PythonObjectExecutor( python_object=PredictStreamMnistModel()), output_num=1) af.write_example(input_data=stream_predict, example_info=stream_predict_result_example_meta, executor=PythonObjectExecutor( python_object=WriteStreamExample())) af.stop_before_control_dependency(stream_predict, batch_train) workflow_id = af.run(test_util.get_project_path()) res = af.wait_workflow_execution_finished(workflow_id) self.assertEqual(0, res)
def run_project(project_root_path): af.set_project_config_file(project_root_path + "/project.yaml") project_name = af.project_config().get_project_name() artifact_prefix = project_name + "." validate_trigger = af.external_trigger(name='validate') push_trigger = af.external_trigger(name='push') with af.global_config_file(project_root_path + '/resources/workflow_config.yaml'): with af.config('train_job'): train_example = af.register_example(name=artifact_prefix + 'train_example', support_type=ExampleSupportType.EXAMPLE_STREAM, stream_uri=EXAMPLE_URI.format('train')) train_read_example = af.read_example(example_info=train_example, executor=PythonObjectExecutor(python_object=TrainExampleReader())) train_transform = af.transform(input_data_list=[train_read_example], executor=PythonObjectExecutor(python_object=TrainExampleTransformer())) train_model = af.register_model(model_name=artifact_prefix + 'logistic-regression', model_type=ModelType.SAVED_MODEL, model_desc='logistic regression model') train_channel = af.train(input_data_list=[train_transform], executor=PythonObjectExecutor(python_object=ModelTrainer()), model_info=train_model) with af.config('validate_job'): validate_example = af.register_example(name=artifact_prefix + 'validate_example', support_type=ExampleSupportType.EXAMPLE_STREAM, stream_uri=EXAMPLE_URI.format('evaluate'), data_format='npz') validate_read_example = af.read_example(example_info=validate_example, executor=PythonObjectExecutor( python_object=ValidateExampleReader())) validate_transform = af.transform(input_data_list=[validate_read_example], executor=PythonObjectExecutor(python_object=ValidateTransformer())) validate_artifact_name = artifact_prefix + 'validate_artifact' validate_artifact = af.register_artifact(name=validate_artifact_name, stream_uri=get_file_dir(__file__) + '/validate_result') validate_channel = af.model_validate(input_data_list=[validate_transform], model_info=train_model, executor=PythonObjectExecutor( python_object=ModelValidator(validate_artifact_name)), ) with af.config('push_job'): # Push model to serving # Register metadata of pushed model push_model_artifact_name = artifact_prefix + 'push_model_artifact' push_model_artifact = af.register_artifact(name=push_model_artifact_name, stream_uri=get_file_dir(__file__) + '/pushed_model') push_channel = af.push_model(model_info=train_model, executor=PythonObjectExecutor( python_object=ModelPusher(push_model_artifact_name))) with af.config('predict_job'): predict_example = af.register_example(name=artifact_prefix + 'predict_example', support_type=ExampleSupportType.EXAMPLE_STREAM, stream_uri=EXAMPLE_URI.format('predict')) predict_read_example = af.read_example(example_info=predict_example, executor=PythonObjectExecutor(python_object=PredictExampleReader())) predict_transform = af.transform(input_data_list=[predict_read_example], executor=PythonObjectExecutor(python_object=PredictTransformer())) predict_channel = af.predict(input_data_list=[predict_transform], model_info=train_model, executor=PythonObjectExecutor(python_object=ModelPredictor())) write_example = af.register_example(name=artifact_prefix + 'export_example', support_type=ExampleSupportType.EXAMPLE_STREAM, stream_uri=get_file_dir(__file__) + '/predict_result') af.write_example(input_data=predict_channel, example_info=write_example, executor=PythonObjectExecutor(python_object=ExampleWriter())) af.model_version_control_dependency(src=validate_channel, model_version_event_type=ModelVersionEventType.MODEL_GENERATED, dependency=validate_trigger, model_name=train_model.name) af.model_version_control_dependency(src=push_channel, model_version_event_type=ModelVersionEventType.MODEL_VALIDATED, dependency=push_trigger, model_name=train_model.name) # Run workflow transform_dag = project_name af.deploy_to_airflow(project_root_path, dag_id=transform_dag) af.run(project_path=project_root_path, dag_id=transform_dag, scheduler_type=SchedulerType.AIRFLOW)
def run_workflow(): # Init project af.init_ai_flow_context() artifact_prefix = af.current_project_config().get_project_name() + "." # Training of model with af.job_config('train'): # Register metadata of training data(dataset) and read dataset(i.e. training dataset) train_dataset = af.register_dataset(name=artifact_prefix + 'train_dataset', uri=DATASET_URI.format('train')) train_read_dataset = af.read_dataset(dataset_info=train_dataset, read_dataset_processor=DatasetReader()) # Register model metadata and train model train_model = af.register_model(model_name=artifact_prefix + 'KNN', model_desc='KNN model') train_channel = af.train(input=[train_read_dataset], training_processor=ModelTrainer(), model_info=train_model) # Validation of model with af.job_config('validate'): # Read validation dataset validate_dataset = af.register_dataset(name=artifact_prefix + 'validate_dataset', uri=DATASET_URI.format('test')) # Validate model before it is used to predict validate_read_dataset = af.read_dataset(dataset_info=validate_dataset, read_dataset_processor=ValidateDatasetReader()) validate_artifact_name = artifact_prefix + 'validate_artifact' validate_artifact = af.register_artifact(name=validate_artifact_name, uri=get_file_dir(__file__) + '/validate_result') validate_channel = af.model_validate(input=[validate_read_dataset], model_info=train_model, model_validation_processor=ModelValidator(validate_artifact_name)) # Prediction(Inference) using flink with af.job_config('predict'): # Read test data and do prediction predict_dataset = af.register_dataset(name=artifact_prefix + 'predict_dataset', uri=DATASET_URI.format('test')) predict_read_dataset = af.read_dataset(dataset_info=predict_dataset, read_dataset_processor=Source()) predict_channel = af.predict(input=[predict_read_dataset], model_info=train_model, prediction_processor=Predictor()) # Save prediction result write_dataset = af.register_dataset(name=artifact_prefix + 'write_dataset', uri=get_file_dir(__file__) + '/predict_result.csv') af.write_dataset(input=predict_channel, dataset_info=write_dataset, write_dataset_processor=Sink()) # Define relation graph connected by control edge: train -> validate -> predict af.action_on_model_version_event(job_name='validate', model_version_event_type=ModelVersionEventType.MODEL_GENERATED, model_name=train_model.name) af.action_on_model_version_event(job_name='predict', model_version_event_type=ModelVersionEventType.MODEL_VALIDATED, model_name=train_model.name) # Submit workflow af.workflow_operation.submit_workflow(af.current_workflow_config().workflow_name) # Run workflow af.workflow_operation.start_new_workflow_execution(af.current_workflow_config().workflow_name)
def run_project(project_root_path): af.set_project_config_file(project_root_path + "/project.yaml") project_name = af.project_config().get_project_name() artifact_prefix = project_name + "." validate_trigger = af.external_trigger(name='validate') push_trigger = af.external_trigger(name='push') with af.global_config_file(project_root_path + '/resources/workflow_config.yaml'): # the config of train job is a periodic job which means it will # run every `interval`(defined in workflow_config.yaml) seconds with af.config('train_job'): # Register metadata raw training data(example) and read example(i.e. training dataset) train_example = af.register_example(name=artifact_prefix + 'train_example', support_type=ExampleSupportType.EXAMPLE_BATCH, batch_uri=EXAMPLE_URI.format('train')) train_read_example = af.read_example(example_info=train_example, executor=PythonObjectExecutor(python_object=ExampleReader())) # Transform(preprocessing) example train_transform = af.transform(input_data_list=[train_read_example], executor=PythonObjectExecutor(python_object=ExampleTransformer())) # Register model metadata and train model train_model = af.register_model(model_name=artifact_prefix + 'logistic-regression', model_type=ModelType.SAVED_MODEL, model_desc='logistic regression model') train_channel = af.train(input_data_list=[train_transform], executor=PythonObjectExecutor(python_object=ModelTrainer()), model_info=train_model) with af.config('validate_job'): # Validation of model # Read validation dataset and validate model before it is used to predict validate_example = af.register_example(name=artifact_prefix + 'validate_example', support_type=ExampleSupportType.EXAMPLE_STREAM, batch_uri=EXAMPLE_URI.format('evaluate')) validate_read_example = af.read_example(example_info=validate_example, executor=PythonObjectExecutor( python_object=ValidateExampleReader())) validate_transform = af.transform(input_data_list=[validate_read_example], executor=PythonObjectExecutor(python_object=ValidateTransformer())) validate_artifact_name = artifact_prefix + 'validate_artifact' validate_artifact = af.register_artifact(name=validate_artifact_name, batch_uri=get_file_dir(__file__) + '/validate_result') validate_channel = af.model_validate(input_data_list=[validate_transform], model_info=train_model, executor=PythonObjectExecutor( python_object=ModelValidator(validate_artifact_name))) with af.config('push_job'): # Push model to serving # Register metadata of pushed model push_model_artifact_name = artifact_prefix + 'push_model_artifact' push_model_artifact = af.register_artifact(name=push_model_artifact_name, batch_uri=get_file_dir(__file__) + '/pushed_model') push_channel = af.push_model(model_info=train_model, executor=PythonObjectExecutor( python_object=ModelPusher(push_model_artifact_name))) with af.config('predict_job'): # Prediction(Inference) predict_example = af.register_example(name=artifact_prefix + 'predict_example', support_type=ExampleSupportType.EXAMPLE_STREAM, stream_uri=EXAMPLE_URI.format('predict')) predict_read_example = af.read_example(example_info=predict_example, executor=PythonObjectExecutor(python_object=PredictExampleReader())) predict_transform = af.transform(input_data_list=[predict_read_example], executor=PythonObjectExecutor(python_object=PredictTransformer())) predict_channel = af.predict(input_data_list=[predict_transform], model_info=train_model, executor=PythonObjectExecutor(python_object=ModelPredictor())) # Save prediction result write_example = af.register_example(name=artifact_prefix + 'write_example', support_type=ExampleSupportType.EXAMPLE_STREAM, stream_uri=get_file_dir(__file__) + '/predict_result') af.write_example(input_data=predict_channel, example_info=write_example, executor=PythonObjectExecutor(python_object=ExampleWriter())) # Define relation graph connected by control edge: # Once a round of training is done, validator will be launched and # pusher will be launched if the new model is better. # Prediction will start once the first round of training is done and # when pusher pushes(deploys) a new model, the predictor will use the latest deployed model as well. af.model_version_control_dependency(src=validate_channel, model_version_event_type=ModelVersionEventType.MODEL_GENERATED, dependency=validate_trigger, model_name=train_model.name) af.model_version_control_dependency(src=push_channel, model_version_event_type=ModelVersionEventType.MODEL_VALIDATED, dependency=push_trigger, model_name=train_model.name) # Run workflow transform_dag = project_name af.deploy_to_airflow(project_root_path, dag_id=transform_dag) af.run(project_path=project_root_path, dag_id=transform_dag, scheduler_type=SchedulerType.AIRFLOW)
def run_workflow(): af.init_ai_flow_context() artifact_prefix = af.current_project_config().get_project_name() + "." # the config of train job is a periodic job which means it will # run every `interval`(defined in workflow_config.yaml) seconds with af.job_config('train'): # Register metadata raw training data(dataset) and read dataset(i.e. training dataset) train_dataset = af.register_dataset(name=artifact_prefix + 'train_dataset', uri=DATASET_URI.format('train')) train_read_dataset = af.read_dataset( dataset_info=train_dataset, read_dataset_processor=DatasetReader()) # Transform(preprocessing) dataset train_transform = af.transform( input=[train_read_dataset], transform_processor=DatasetTransformer()) # Register model metadata and train model train_model = af.register_model(model_name=artifact_prefix + 'logistic-regression', model_desc='logistic regression model') train_channel = af.train(input=[train_transform], training_processor=ModelTrainer(), model_info=train_model) with af.job_config('validate'): # Validation of model # Read validation dataset and validate model before it is used to predict validate_dataset = af.register_dataset( name=artifact_prefix + 'validate_dataset', uri=DATASET_URI.format('evaluate')) validate_read_dataset = af.read_dataset( dataset_info=validate_dataset, read_dataset_processor=ValidateDatasetReader()) validate_transform = af.transform( input=[validate_read_dataset], transform_processor=ValidateTransformer()) validate_artifact_name = artifact_prefix + 'validate_artifact' validate_artifact = af.register_artifact(name=validate_artifact_name, uri=get_file_dir(__file__) + '/validate_result') validate_channel = af.model_validate( input=[validate_transform], model_info=train_model, model_validation_processor=ModelValidator(validate_artifact_name)) with af.job_config('push'): # Push model to serving # Register metadata of pushed model push_model_artifact_name = artifact_prefix + 'push_model_artifact' push_model_artifact = af.register_artifact( name=push_model_artifact_name, uri=get_file_dir(__file__) + '/pushed_model') af.push_model( model_info=train_model, pushing_model_processor=ModelPusher(push_model_artifact_name)) with af.job_config('predict'): # Prediction(Inference) predict_dataset = af.register_dataset( name=artifact_prefix + 'predict_dataset', uri=DATASET_URI.format('predict')) predict_read_dataset = af.read_dataset( dataset_info=predict_dataset, read_dataset_processor=PredictDatasetReader()) predict_transform = af.transform( input=[predict_read_dataset], transform_processor=PredictTransformer()) predict_channel = af.predict(input=[predict_transform], model_info=train_model, prediction_processor=ModelPredictor()) # Save prediction result write_dataset = af.register_dataset( name=artifact_prefix + 'write_dataset', uri=get_file_dir(__file__) + '/predict_result') af.write_dataset(input=predict_channel, dataset_info=write_dataset, write_dataset_processor=DatasetWriter()) # Define relation graph connected by control edge: # Once a round of training is done, validator will be launched and # pusher will be launched if the new model is better. # Prediction will start once the first round of training is done and # when pusher pushes(deploys) a new model, the predictor will use the latest deployed model as well. af.action_on_model_version_event( job_name='validate', model_version_event_type=ModelVersionEventType.MODEL_GENERATED, model_name=train_model.name) af.action_on_model_version_event( job_name='push', model_version_event_type=ModelVersionEventType.MODEL_VALIDATED, model_name=train_model.name) # Run workflow af.workflow_operation.submit_workflow( af.current_workflow_config().workflow_name) af.workflow_operation.start_new_workflow_execution( af.current_workflow_config().workflow_name)
def run_flink_predict_job(): input_file = "/test1.csv" output_file = "/output_test2.csv" example_1 = af.create_example( name="example_1", support_type=af.ExampleSupportType.EXAMPLE_BOTH, batch_uri=input_file, stream_uri=input_file, data_format="csv") example_2 = af.create_example( name="example_2", support_type=af.ExampleSupportType.EXAMPLE_BOTH, batch_uri=output_file, stream_uri=output_file, data_format="csv") flink_config = faf.LocalFlinkJobConfig() flink_config.flink_home = '' with af.config(flink_config): batch_args_1: Properties = {} ddl = """CREATE TABLE input_table (a INT, b INT, c INT) WITH ('connector' = 'filesystem', 'path' = 'INPUT', 'format' = 'csv' )""" table_name = "input_table" batch_args_1['ddl'] = ddl batch_args_1['table_name'] = table_name stream_args_1 = batch_args_1 batch_args_2: Properties = {} ddl = """CREATE TABLE output_table (aa INT, cc INT) WITH ('connector' = 'filesystem', 'path' = 'OUTPUT', 'format' = 'csv' )""" table_name = "output_table" batch_args_2['ddl'] = ddl batch_args_2['table_name'] = table_name stream_args_2 = batch_args_2 input_example = af.read_example(example_info=example_1, exec_args=ExecuteArgs( batch_properties=batch_args_1, stream_properties=stream_args_1)) model_meta = af.ModelMeta(name="test", model_type="saved_model") model_version = af.ModelVersionMeta(version="11111", model_path="./tmp/saved_model/", model_metric="./tmp/saved_model/", model_id=0) processed = af.predict( input_data_list=[input_example], model_info=model_meta, model_version_info=model_version, executor=faf.flink_executor.FlinkJavaExecutor( java_class="com.apache.flink.ai.flow.TestPredict")) af.write_example(input_data=processed, example_info=example_2, exec_args=ExecuteArgs( batch_properties=batch_args_2, stream_properties=stream_args_2)) g = af.default_graph() workflow = af.compile_workflow(project_path=test_util.get_project_path()) print(dumps(list(workflow.jobs.values())[0]))
def run_workflow(): af.init_ai_flow_context() artifact_prefix = af.current_project_config().get_project_name() + "." with af.job_config('train'): # Register metadata raw training data(dataset) and read dataset(i.e. training dataset) train_dataset = af.register_dataset(name=artifact_prefix + 'train_dataset', uri=DATASET_URI.format('train')) train_read_dataset = af.read_dataset( dataset_info=train_dataset, read_dataset_processor=TrainDatasetReader()) train_transform = af.transform( input=[train_read_dataset], transform_processor=TrainDatasetTransformer()) train_model = af.register_model(model_name=artifact_prefix + 'logistic-regression', model_desc='logistic regression model') train_channel = af.train(input=[train_transform], training_processor=ModelTrainer(), model_info=train_model) with af.job_config('validate'): validate_dataset = af.register_dataset( name=artifact_prefix + 'validate_dataset', uri=DATASET_URI.format('evaluate')) validate_read_dataset = af.read_dataset( dataset_info=validate_dataset, read_dataset_processor=ValidateDatasetReader()) validate_transform = af.transform( input=[validate_read_dataset], transform_processor=ValidateTransformer()) validate_artifact_name = artifact_prefix + 'validate_artifact' validate_artifact = af.register_artifact(name=validate_artifact_name, uri=get_file_dir(__file__) + '/validate_result') validate_channel = af.model_validate( input=[validate_transform], model_info=train_model, model_validation_processor=ModelValidator(validate_artifact_name)) with af.job_config('push'): # Push model to serving # Register metadata of pushed model push_model_artifact_name = artifact_prefix + 'push_model_artifact' push_model_artifact = af.register_artifact( name=push_model_artifact_name, uri=get_file_dir(__file__) + '/pushed_model') af.push_model( model_info=train_model, pushing_model_processor=ModelPusher(push_model_artifact_name)) with af.job_config('predict'): predict_dataset = af.register_dataset( name=artifact_prefix + 'predict_dataset', uri=DATASET_URI.format('predict')) predict_read_dataset = af.read_dataset( dataset_info=predict_dataset, read_dataset_processor=PredictDatasetReader()) predict_transform = af.transform( input=[predict_read_dataset], transform_processor=PredictTransformer()) predict_channel = af.predict(input=[predict_transform], model_info=train_model, prediction_processor=ModelPredictor()) write_dataset = af.register_dataset( name=artifact_prefix + 'export_dataset', uri=get_file_dir(__file__) + '/predict_result') af.write_dataset(input=predict_channel, dataset_info=write_dataset, write_dataset_processor=DatasetWriter()) af.action_on_model_version_event( job_name='validate', model_version_event_type=ModelVersionEventType.MODEL_GENERATED, model_name=train_model.name) af.action_on_model_version_event( job_name='push', model_version_event_type=ModelVersionEventType.MODEL_VALIDATED, model_name=train_model.name) # Run workflow af.workflow_operation.submit_workflow( af.current_workflow_config().workflow_name) af.workflow_operation.start_new_workflow_execution( af.current_workflow_config().workflow_name)
def run_workflow(): af.init_ai_flow_context() artifact_prefix = af.current_project_config().get_project_name() + "." with af.job_config('train'): # Training of model # Register metadata raw training data(dataset) and read dataset(i.e. training dataset) train_dataset = af.register_dataset(name=artifact_prefix + 'train_dataset', uri=DATASET_URI.format('train')) train_read_dataset = af.read_dataset( dataset_info=train_dataset, read_dataset_processor=DatasetReader()) # Transform(preprocessing) dataset train_transform = af.transform( input=[train_read_dataset], transform_processor=DatasetTransformer()) # Register model metadata and train model train_model = af.register_model(model_name=artifact_prefix + 'logistic-regression', model_desc='logistic regression model') train_channel = af.train(input=[train_transform], training_processor=ModelTrainer(), model_info=train_model) with af.job_config('evaluate'): # Evaluation of model evaluate_dataset = af.register_dataset( name=artifact_prefix + 'evaluate_dataset', uri=DATASET_URI.format('evaluate')) evaluate_read_dataset = af.read_dataset( dataset_info=evaluate_dataset, read_dataset_processor=EvaluateDatasetReader()) evaluate_transform = af.transform( input=[evaluate_read_dataset], transform_processor=EvaluateTransformer()) # Register disk path used to save evaluate result evaluate_artifact_name = artifact_prefix + 'evaluate_artifact' evaluate_artifact = af.register_artifact(name=evaluate_artifact_name, uri=get_file_dir(__file__) + '/evaluate_result') # Evaluate model evaluate_channel = af.evaluate( input=[evaluate_transform], model_info=train_model, evaluation_processor=ModelEvaluator(evaluate_artifact_name)) with af.job_config('validate'): # Validation of model # Read validation dataset and validate model before it is used to predict validate_dataset = af.register_dataset( name=artifact_prefix + 'validate_dataset', uri=DATASET_URI.format('evaluate')) validate_read_dataset = af.read_dataset( dataset_info=validate_dataset, read_dataset_processor=ValidateDatasetReader()) validate_transform = af.transform( input=[validate_read_dataset], transform_processor=ValidateTransformer()) validate_artifact_name = artifact_prefix + 'validate_artifact' validate_artifact = af.register_artifact(name=validate_artifact_name, uri=get_file_dir(__file__) + '/validate_result') validate_channel = af.model_validate( input=[validate_transform], model_info=train_model, model_validation_processor=ModelValidator(validate_artifact_name)) with af.job_config('push'): # Push model to serving # Register metadata of pushed model push_model_artifact_name = artifact_prefix + 'push_model_artifact' push_model_artifact = af.register_artifact( name=push_model_artifact_name, uri=get_file_dir(__file__) + '/pushed_model') af.push_model( model_info=train_model, pushing_model_processor=ModelPusher(push_model_artifact_name)) with af.job_config('predict'): # Prediction(Inference) predict_dataset = af.register_dataset( name=artifact_prefix + 'predict_dataset', uri=DATASET_URI.format('predict')) predict_read_dataset = af.read_dataset( dataset_info=predict_dataset, read_dataset_processor=PredictDatasetReader()) predict_transform = af.transform( input=[predict_read_dataset], transform_processor=PredictTransformer()) predict_channel = af.predict(input=[predict_transform], model_info=train_model, prediction_processor=ModelPredictor()) # Save prediction result write_dataset = af.register_dataset( name=artifact_prefix + 'write_dataset', uri=get_file_dir(__file__) + '/predict_result') af.write_dataset(input=predict_channel, dataset_info=write_dataset, write_dataset_processor=DatasetWriter()) # Define relation graph connected by control edge: train -> evaluate -> validate -> push -> predict af.action_on_job_status('evaluate', 'train') af.action_on_job_status('validate', 'evaluate') af.action_on_job_status('push', 'validate') af.action_on_job_status('predict', 'push') # Run workflow af.workflow_operation.submit_workflow( af.current_workflow_config().workflow_name) af.workflow_operation.start_new_workflow_execution( af.current_workflow_config().workflow_name)
def run_workflow(): """ Run the user-defined workflow definition. """ train_data_file, predict_result_directory, merge_predict_result_path, \ first_test_data_file, first_result_data_file = collect_data_file() # Prepare workflow: Example & Model Metadata registration. train_example_meta, predict_result_meta, merge_data_meta, first_test_example_meta, second_test_example_meta, \ first_result_example_meta, second_result_example_meta, train_model_meta = \ prepare_workflow(train_data_file=train_data_file, predict_result_directory=predict_result_directory, merge_predict_result_path=merge_predict_result_path, first_test_data_file=first_test_data_file, first_result_data_file=first_result_data_file) # Save proxima indexes under the following index path. index_path = '{}/codes/{}/'.format(os.environ['ENV_HOME'], os.environ['TASK_ID']) + 'test.index' # Set Python job config to train model. python_job_config_0 = BaseJobConfig(platform='local', engine='python', job_name='train') python_job_config_1 = BaseJobConfig(platform='local', engine='python', job_name='start_cluster_serving') python_job_config_2 = BaseJobConfig(platform='local', engine='python', job_name='merge_predict_result') # Set Flink job config to predict with cluster serving global_job_config_1 = LocalFlinkJobConfig() global_job_config_1.local_mode = 'cluster' global_job_config_1.flink_home = os.environ['FLINK_HOME'] global_job_config_1.job_name = 'cluster_serving' global_job_config_1.set_table_env_create_func(StreamTableEnvCreatorBuildIndex()) # Set Flink job config to build index. global_job_config_2 = LocalFlinkJobConfig() global_job_config_2.local_mode = 'cluster' global_job_config_2.flink_home = os.environ['FLINK_HOME'] global_job_config_2.job_name = 'build_index' global_job_config_2.set_table_env_create_func(StreamTableEnvCreator()) # Set Flink job config to fink sick. global_job_config_3 = LocalFlinkJobConfig() global_job_config_3.local_mode = 'cluster' global_job_config_3.flink_home = os.environ['FLINK_HOME'] global_job_config_3.job_name = 'find_sick' global_job_config_3.set_table_env_create_func(StreamTableEnvCreator()) # Set Flink job config to online cluster. global_job_config_4 = LocalFlinkJobConfig() global_job_config_4.local_mode = 'cluster' global_job_config_4.flink_home = os.environ['FLINK_HOME'] global_job_config_4.job_name = 'online_cluster' global_job_config_4.set_table_env_create_func(StreamTableEnvCreator()) with af.config(python_job_config_0): # Under first job config, we construct the first job, the job is going to train an auto_encoder model. python_job_0_read_train_example = af.read_example(example_info=train_example_meta, executor=PythonObjectExecutor(python_object=ReadCsvExample())) python_job_0_train_model = af.train(input_data_list=[python_job_0_read_train_example], executor=PythonObjectExecutor(python_object=TrainAutoEncoder()), model_info=train_model_meta, name='trainer_0') with af.config(python_job_config_1): python_job_1_cluster_serving_channel = af.cluster_serving(model_info=train_model_meta, parallelism=2) # python_job_1_cluster_serving_channel = af.cluster_serving(model_info=train_model_meta, parallelism=16) with af.config(global_job_config_1): flink_job_0_read_train_example = af.read_example(example_info=train_example_meta, executor=FlinkPythonExecutor(python_object=ReadTrainExample())) flink_job_0_predict_model = af.predict(input_data_list=[flink_job_0_read_train_example], model_info=train_model_meta, executor=FlinkPythonExecutor( python_object=PredictAutoEncoderWithTrain())) flink_job_0_write_predict_data = af.write_example(input_data=flink_job_0_predict_model, example_info=predict_result_meta, executor=FlinkPythonExecutor( python_object=WritePredictResult())) with af.config(python_job_config_2): python_job_2_merge_train_data_file = af.user_define_operation(executor=PythonObjectExecutor( python_object=MergePredictResult())) with af.config(global_job_config_2): flink_job_1_read_train_example = af.read_example(example_info=merge_data_meta, executor=FlinkPythonExecutor(python_object=ReadMergeExample())) flink_job_1_build_index_channel = af.transform([flink_job_1_read_train_example], executor=FlinkPythonExecutor( python_object=BuildIndexExecutor(index_path, FloatDataType(), 128))) with af.config(global_job_config_3): flink_job_2_read_history_example = af.read_example(example_info=first_test_example_meta, executor=FlinkPythonExecutor( python_object=ReadPredictExample())) flink_job_2_predict_model = af.predict(input_data_list=[flink_job_2_read_history_example], model_info=train_model_meta, executor=FlinkPythonExecutor(python_object=PredictAutoEncoder())) flink_job_2_transformed_data = af.transform([flink_job_2_predict_model], executor=FlinkPythonExecutor( python_object=SearchExecutor(index_path, FloatDataType(), 2))) flink_job_2_read_train_example = af.read_example(example_info=train_example_meta, executor=FlinkPythonExecutor(python_object=ReadTrainExample())) flink_job_2_join_channel = af.transform( input_data_list=[flink_job_2_transformed_data, flink_job_2_read_train_example], executor=FlinkPythonExecutor(python_object=FindHistory())) flink_job_2_write_result = af.write_example(input_data=flink_job_2_join_channel, example_info=first_result_example_meta, executor=FlinkPythonExecutor(python_object=SearchSink())) with af.config(global_job_config_4): flink_job_3_read_online_example = af.read_example(example_info=second_test_example_meta, executor=FlinkPythonExecutor( python_object=ReadOnlinePredictExample())) flink_job_3_predict_model = af.predict(input_data_list=[flink_job_3_read_online_example], model_info=train_model_meta, executor=FlinkPythonExecutor(python_object=OnlinePredictAutoEncoder())) flink_job_3_transformed_data = af.transform([flink_job_3_predict_model], executor=FlinkPythonExecutor( python_object=SearchExecutor3(index_path, FloatDataType(), 2))) af.write_example(input_data=flink_job_3_transformed_data, example_info=second_result_example_meta, executor=FlinkPythonExecutor(python_object=WriteSecondResult())) af.stop_before_control_dependency(python_job_1_cluster_serving_channel, python_job_0_train_model) af.stop_before_control_dependency(flink_job_0_read_train_example, python_job_1_cluster_serving_channel) af.stop_before_control_dependency(python_job_2_merge_train_data_file, flink_job_0_read_train_example) af.stop_before_control_dependency(flink_job_1_build_index_channel, python_job_2_merge_train_data_file) af.stop_before_control_dependency(flink_job_2_read_history_example, flink_job_1_build_index_channel) af.stop_before_control_dependency(flink_job_3_read_online_example, flink_job_2_write_result) workflow_id = af.run(get_project_path()+'/') res = af.wait_workflow_execution_finished(workflow_id) sys.exit(res)