def main(): parser = argparse.ArgumentParser( description= "Compute a sample correlation matrix from a matrix of expression values. Including --probes_csv causes this to only compute correlation values for one probe per gene (the 'median' probe)." ) parser.add_argument('-p', '--probes_csv', help="path to Probes.csv.") parser.add_argument('expression_csv', help="path to MicroarrayExpression.csv") parser.add_argument('output_npz', help="output .npz file name") args = parser.parse_args() print "Reading Expression Values" values = aibs.read_expression_values(args.expression_csv) if args.probes_csv: print "Filtering Probes" probes, gene_probes = aibs.read_probes(args.probes_csv) best_probes = find_best_probes(gene_probes, values) best_probe_indices = np.array([p['index'] for p in best_probes]) values = values[best_probe_indices, :] print values.shape values = np.transpose(values) print "Computing Sample Covariance" cov = np.corrcoef(values) print "Saving " + args.output_npz np.savez(args.output_npz, cov)
def main(): parser = argparse.ArgumentParser(description="Compute a sample correlation matrix from a matrix of expression values. Including --probes_csv causes this to only compute correlation values for one probe per gene (the 'median' probe).") parser.add_argument('-p','--probes_csv', help="path to Probes.csv.") parser.add_argument('expression_csv', help="path to MicroarrayExpression.csv") parser.add_argument('output_npz', help="output .npz file name") args = parser.parse_args() print "Reading Expression Values" values = aibs.read_expression_values(args.expression_csv) if args.probes_csv: print "Filtering Probes" probes, gene_probes = aibs.read_probes(args.probes_csv) best_probes = find_best_probes(gene_probes, values) best_probe_indices = np.array([ p['index'] for p in best_probes ]) values = values[best_probe_indices, :] print values.shape values = np.transpose(values) print "Computing Sample Covariance" cov = np.corrcoef(values) print "Saving " + args.output_npz np.savez(args.output_npz, cov)
def main(): parser = argparse.ArgumentParser( description= "Create a CSV file that lists one probe (the 'median' probe) for every gene." ) parser.add_argument('probes_csv', help="path to Probes.csv") parser.add_argument('expression_csv', help="path to MicroarrayExpression.csv") parser.add_argument('output_csv', help="output .csv file name") args = parser.parse_args() print "Reading Expression Values" values = aibs.read_expression_values(args.expression_csv) print "Reading Probes" probes, gene_probes = aibs.read_probes(args.probes_csv) print "Finding Best Probes" out_probes = find_best_probes(gene_probes, values) print "Writing " + args.output_csv with open(args.output_csv, 'w') as outfile: print >> outfile, "probe_id,array_index" for probe in out_probes: print >> outfile, ','.join( [probe['probe_id'], str(probe['index'])])
def main(): parser = argparse.ArgumentParser(description="Create a CSV file that lists one probe (the 'median' probe) for every gene.") parser.add_argument('probes_csv', help="path to Probes.csv") parser.add_argument('expression_csv', help="path to MicroarrayExpression.csv") parser.add_argument('output_csv', help="output .csv file name") args = parser.parse_args() print "Reading Expression Values" values = aibs.read_expression_values(args.expression_csv) print "Reading Probes" probes, gene_probes = aibs.read_probes(args.probes_csv) print "Finding Best Probes" out_probes = find_best_probes(gene_probes, values) print "Writing " + args.output_csv with open(args.output_csv, 'w') as outfile: print>>outfile, "probe_id,array_index" for probe in out_probes: print>>outfile, ','.join([probe['probe_id'], str(probe['index'])])