Exemplo n.º 1
0
def init_exp_logger(repo=None, experiment_name=None, flush_frequency=1):
    if repo is None:
        repo = os.path.join(log_path(),"./.aim")
        if not os.path.exists(repo):
            logger.info('{} dir is not exist, create {}',repo, repo)
            os.system(str("cd " + os.path.join(repo,"../") + "&& aim init"))
    
    aim_logger = aim.Session(repo = repo, experiment=experiment_name, flush_frequency=flush_frequency)
    aim_logger.experiment_name = experiment_name
    
    return aim_logger
    def __init__(
        self,
        name = 'default',
        results_dir = 'results',
        models_dir = 'models',
        base_dir = './',
        image_size = 128,
        network_capacity = 16,
        fmap_max = 512,
        transparent = False,
        batch_size = 4,
        mixed_prob = 0.9,
        gradient_accumulate_every=1,
        lr = 2e-4,
        lr_mlp = 1.,
        ttur_mult = 2,
        rel_disc_loss = False,
        num_workers = None,
        save_every = 1000,
        evaluate_every = 1000,
        num_image_tiles = 8,
        trunc_psi = 0.6,
        fp16 = False,
        cl_reg = False,
        fq_layers = [],
        fq_dict_size = 256,
        attn_layers = [],
        no_const = False,
        aug_prob = 0.,
        aug_types = ['translation', 'cutout'],
        top_k_training = False,
        generator_top_k_gamma = 0.99,
        generator_top_k_frac = 0.5,
        dataset_aug_prob = 0.,
        calculate_fid_every = None,
        is_ddp = False,
        rank = 0,
        world_size = 1,
        log = False,
        *args,
        **kwargs
    ):
        self.GAN_params = [args, kwargs]
        self.GAN = None

        self.name = name

        base_dir = Path(base_dir)
        self.base_dir = base_dir
        self.results_dir = base_dir / results_dir
        self.models_dir = base_dir / models_dir
        print(self.results_dir, self.models_dir)
        self.config_path = self.models_dir / name / '.config.json'

        assert log2(image_size).is_integer(), 'image size must be a power of 2 (64, 128, 256, 512, 1024)'
        self.image_size = image_size
        self.network_capacity = network_capacity
        self.fmap_max = fmap_max
        self.transparent = transparent

        self.fq_layers = cast_list(fq_layers)
        self.fq_dict_size = fq_dict_size
        self.has_fq = len(self.fq_layers) > 0

        self.attn_layers = cast_list(attn_layers)
        self.no_const = no_const

        self.aug_prob = aug_prob
        self.aug_types = aug_types

        self.lr = lr
        self.lr_mlp = lr_mlp
        self.ttur_mult = ttur_mult
        self.rel_disc_loss = rel_disc_loss
        self.batch_size = batch_size
        self.num_workers = num_workers
        self.mixed_prob = mixed_prob

        self.num_image_tiles = num_image_tiles
        self.evaluate_every = evaluate_every
        self.save_every = save_every
        self.steps = 0

        self.av = None
        self.trunc_psi = trunc_psi

        self.pl_mean = None

        self.gradient_accumulate_every = gradient_accumulate_every

        assert not fp16 or fp16 and APEX_AVAILABLE, 'Apex is not available for you to use mixed precision training'
        self.fp16 = fp16

        self.cl_reg = cl_reg

        self.d_loss = 0
        self.g_loss = 0
        self.q_loss = None
        self.last_gp_loss = None
        self.last_cr_loss = None
        self.last_fid = None

        self.pl_length_ma = EMA(0.99)
        self.init_folders()

        self.loader = None
        self.dataset_aug_prob = dataset_aug_prob

        self.calculate_fid_every = calculate_fid_every

        self.top_k_training = top_k_training
        self.generator_top_k_gamma = generator_top_k_gamma
        self.generator_top_k_frac = generator_top_k_frac

        assert not (is_ddp and cl_reg), 'Contrastive loss regularization does not work well with multi GPUs yet'
        self.is_ddp = is_ddp
        self.is_main = rank == 0
        self.rank = rank
        self.world_size = world_size

        self.logger = aim.Session(experiment=name) if log else None
Exemplo n.º 3
0
import aim
import random
import math

epochs = 4
steps = 30
c_step = 100

sess = aim.Session(experiment='test_epoch_alignment_x', flush_frequency=10)

sess.set_params({
    'name': 'Dataset name',
    'version': 'Dataset version',
},
                name='dataset')

sess.set_params({
    'epochs': epochs,
    'steps': steps,
    'c_step': c_step,
},
                name='hparmas')

sess.set_params({
    'foo': random.random() * 100,
    'bar': random.random() * 100,
    'baz': random.random() * 100,
    'cluster': int(random.random() * 3),
    'nested': {
        'arr': ['aa', 'bb', 'cc'],
        'obj': {
Exemplo n.º 4
0
import aim
import math

sess = aim.Session(experiment='test_params')

sess.set_params({
    'num_epochs': 10,
    'fc_units': 128,
}, name='hparams')

sess.set_params({
    'name': 'Dataset name',
    'version': 'Dataset version',
},
                name='dataset')

sess.set_params({
    'foo': 'bar',
})

sess.set_params({
    'inf': float('inf'),
    'inf_in_nested_obj': (1, 2, 3, {
        'inf': math.inf,
    }),
})
Exemplo n.º 5
0
import random
import os

import aim


exp1_run1 = aim.Session(experiment='test_metrics', flush_frequency=10)
exp1_run2 = aim.Session(experiment='test_metrics', flush_frequency=10)
exp2 = aim.Session(experiment='test_metrics_2', flush_frequency=10)

print(os.getpid(), exp1_run1.run_hash, exp1_run2.run_hash, exp2.run_hash)

exp1_run1.set_params({
    'foo': random.random() * 100,
    'bar': random.random() * 100,
    'baz': random.random() * 100,
})
exp1_run2.set_params({
    'foo': random.random() * 100,
    'bar': random.random() * 100,
    'baz': random.random() * 100,
})
exp2.set_params({
    'foo': random.random() * 100,
    'bar': random.random() * 100,
    'baz': random.random() * 100,
})

for i in range(100, 200):
    # Experiment 1, run 1
    exp1_run1.track(i, name='metric_2')
Exemplo n.º 6
0
import aim
import random
import os


exp1_run1 = aim.Session(experiment='test_const', flush_frequency=10)

exp1_run1.set_params({
    'foo': random.random() * 100,
    'bar': random.random() * 100,
    'baz': random.random() * 100,
})

for i in range(100, 200):
    exp1_run1.track(3.45, name='const3')
Exemplo n.º 7
0
import random
import time
import os

import aim

sess = aim.Session(experiment='TEST_METRICS')

sess.set_params({'key': random.random()})

print(os.getpid())

for i in range(100, 4000):
    print(i, i * 2, i * 3)
    sess.track(i, name='metric')
    sess.track(i * 2, name='metric', subset='train', sub=12)
    sess.track(i * 3, name='metric', subset='test', aab=22)
    time.sleep(0.1)
Exemplo n.º 8
0
import random
import time
import os

import aim

sess = aim.Session(experiment='TEST_METRICS', flush_frequency=10)
sess2 = aim.Session(experiment='TEST_METRICS_2', flush_frequency=30)

sess.set_params({'key': random.random()})

print(os.getpid())

for i in range(100, 200):
    sess.track(i, name='metric')
    sess.track(i * 2, name='metric', subset='train', foo='baz')
    sess.track(i * 3, name='metric', subset='test', bar='baz')
    sess2.track(i, name='metric', subset='train', bar='baz')
    time.sleep(1)
Exemplo n.º 9
0
import aim
import math

sess = aim.Session(experiment='test_floats')

sess.set_params({
    'num_epochs': 10,
    'fc_units': 128,
}, name='hparams')

sess.set_params({
    'name': 'Dataset name',
    'version': 'Dataset version',
},
                name='dataset')

sess.set_params({
    'foo': 'bar',
})

sess.set_params({
    'nan_x': 'NaN',
    'inf_x': 'Infinity',
    'nan': float('nan'),
    'inf': float('inf'),
    'inf_in_nested_obj': (1, 2, 3, {
        'inf': math.inf,
    }),
    'nan_in_nested_obj': (1, 2, 3, {
        'nan': math.nan,
    }),
Exemplo n.º 10
0
import random
import aim

sess = aim.Session(experiment='test_2_metrics')

# sess.set_params({'key': random.random()})

for _ in range(100):
    sess.track(random.random(), name='metric')
Exemplo n.º 11
0
import aim

sess = aim.Session(experiment='test_metrics_context', flush_frequency=10)

sess.set_params({
    'num_epochs': 5,
    'lr': 10,
}, name='hparams')

for e in range(5):
    for i in range(50):
        sess.track(i, name='loss', epoch=e, subset='train', subtask='lm')
        sess.track(i, name='acc', epoch=e, subset='train', subtask='lm')
        if i % 10 == 0:
            sess.track(i, name='loss', epoch=e, subset='val', subtask='lm')
            sess.track(i, name='acc', epoch=e, subset='val', subtask='lm')

for e in range(5):
    for i in range(50):
        sess.track(i, name='loss', epoch=e, subset='train', subtask='nmt')
        sess.track(i, name='acc', epoch=e, subset='train', subtask='nmt')
        if i % 10 == 0:
            sess.track(i, name='loss', epoch=e, subset='val', subtask='nmt')
            sess.track(i, name='acc', epoch=e, subset='val', subtask='nmt')
Exemplo n.º 12
0
import aim
import random
import math
import time

foo = 1
bar = 1
seed = 1003

epochs = 4
steps = 30
k = 2.3

sess = aim.Session(experiment='test_system', system_tracking_interval=2)

sess.set_params(
    {
        'epochs': epochs,
        'steps': steps,
        'k': k,
        'foo': foo,
        'bar': bar,
        'seed': seed,
    },
    name='hparmas')
#
# for e in range(epochs):
#     for i in range(steps):
#         sess.track(k, name='agg_metric', epoch=e, subset='train')
#     sess.track(k, name='agg_metric', epoch=e, subset='val')