Exemplo n.º 1
0
def WalkSAT(clauses, p=0.5, max_flips=10000):
    """Checks for satisfiability of all clauses by randomly flipping values of variables
    """
    # Set of all symbols in all clauses
    symbols = {sym for clause in clauses for sym in prop_symbols(clause)}
    # model is a random assignment of true/false to the symbols in clauses
    model = {s: random.choice([True, False]) for s in symbols}
    for i in range(max_flips):
        satisfied, unsatisfied = [], []
        for clause in clauses:
            (satisfied
             if pl_true(clause, model) else unsatisfied).append(clause)
        if not unsatisfied:  # if model satisfies all the clauses
            return model
        clause = random.choice(unsatisfied)
        if probability(p):
            sym = random.choice(list(prop_symbols(clause)))
        else:
            # Flip the symbol in clause that maximizes number of sat. clauses
            def sat_count(sym):
                # Return the the number of clauses satisfied after flipping the symbol.
                model[sym] = not model[sym]
                count = len(
                    [clause for clause in clauses if pl_true(clause, model)])
                model[sym] = not model[sym]
                return count

            sym = argmax(prop_symbols(clause), key=sat_count)
        model[sym] = not model[sym]
    # If no solution is found within the flip limit, we return failure
    return None
Exemplo n.º 2
0
def minimax_decision(state, game):
    """Given a state in a game, calculate the best move by searching
    forward all the way to the terminal states. [Figure 5.3]"""

    player = game.to_move(state)

    def max_value(state):
        if game.terminal_test(state):
            return game.utility(state, player)
        v = -infinity
        for a in game.actions(state):
            v = max(v, min_value(game.result(state, a)))
        return v

    def min_value(state):
        if game.terminal_test(state):
            return game.utility(state, player)
        v = infinity
        for a in game.actions(state):
            v = min(v, max_value(game.result(state, a)))
        return v

    # Body of minimax_decision:
    return argmax(game.actions(state),
                  key=lambda a: min_value(game.result(state, a)))
Exemplo n.º 3
0
    def predict(example):
        """Predict the target value for example. Consider each possible value,
        and pick the most likely by looking at each attribute independently."""
        def class_probability(targetval):
            return (target_dist[targetval] *
                    product(attr_dists[targetval, attr][example[attr]]
                            for attr in dataset.inputs))

        return argmax(target_vals, key=class_probability)
Exemplo n.º 4
0
    def predict(example):
        """Predict the target value for example. Calculate probabilities for each
        class and pick the max."""
        def class_probability(targetval):
            attr_dist = attr_dists[targetval]
            return target_dist[targetval] * product(attr_dist[a]
                                                    for a in example)

        return argmax(target_dist.keys(), key=class_probability)
Exemplo n.º 5
0
def best_policy(mdp, U):
    """Given an MDP and a utility function U, determine the best policy,
    as a mapping from state to action. (Equation 17.4)"""

    pi = {}
    for s in mdp.states:
        pi[s] = argmax(mdp.actions(s),
                       key=lambda a: expected_utility(a, s, U, mdp))
    return pi
Exemplo n.º 6
0
    def predict(example):
        """Predict the target value for example. Consider each possible value,
        and pick the most likely by looking at each attribute independently."""
        def class_probability(targetval):
            prob = target_dist[targetval]
            for attr in dataset.inputs:
                prob *= gaussian(means[targetval][attr],
                                 deviations[targetval][attr], example[attr])
            return prob

        return argmax(target_vals, key=class_probability)
Exemplo n.º 7
0
def genetic_algorithm(population, fitness_fn, ngen=1000, pmut=0.1):
    "[Figure 4.8]"
    for i in range(ngen):
        new_population = []
        for i in len(population):
            fitnesses = map(fitness_fn, population)
            p1, p2 = weighted_sample_with_replacement(population, fitnesses, 2)
            child = p1.mate(p2)
            if random.uniform(0, 1) < pmut:
                child.mutate()
            new_population.append(child)
        population = new_population
    return argmax(population, key=fitness_fn)
Exemplo n.º 8
0
 def max_value(node):
     if game.terminal_test(node):
         return game.utility(node, player)
     self.change_list.append(('a', node))
     self.change_list.append(('h',))
     max_a = argmax(game.actions(node), key=lambda x: min_value(game.result(node, x)))
     max_node = game.result(node, max_a)
     self.utils[node] = self.utils[max_node]
     x1, y1 = self.node_pos[node]
     x2, y2 = self.node_pos[max_node]
     self.change_list.append(('l', (node, max_node - 3*node - 1)))
     self.change_list.append(('e', node))
     self.change_list.append(('p',))
     self.change_list.append(('h',))
     return self.utils[node]
Exemplo n.º 9
0
def policy_iteration(mdp):
    """Solve an MDP by policy iteration [Figure 17.7]"""

    U = {s: 0 for s in mdp.states}
    pi = {s: random.choice(mdp.actions(s)) for s in mdp.states}
    while True:
        U = policy_evaluation(pi, U, mdp)
        unchanged = True
        for s in mdp.states:
            a = argmax(mdp.actions(s),
                       key=lambda a: expected_utility(a, s, U, mdp))
            if a != pi[s]:
                pi[s] = a
                unchanged = False
        if unchanged:
            return pi
Exemplo n.º 10
0
def expectiminimax(state, game):
    """Return the best move for a player after dice are thrown. The game tree
	includes chance nodes along with min and max nodes. [Figure 5.11]"""
    player = game.to_move(state)

    def max_value(state):
        v = -infinity
        for a in game.actions(state):
            v = max(v, chance_node(state, a))
        return v

    def min_value(state):
        v = infinity
        for a in game.actions(state):
            v = min(v, chance_node(state, a))
        return v

    def chance_node(state, action):
        res_state = game.result(state, action)
        if game.terminal_test(res_state):
            return game.utility(res_state, player)
        sum_chances = 0
        num_chances = len(game.chances(res_state))
        for chance in game.chances(res_state):
            res_state = game.outcome(res_state, chance)
            util = 0
            if res_state.to_move == player:
                util = max_value(res_state)
            else:
                util = min_value(res_state)
            sum_chances += util * game.probability(chance)
        return sum_chances / num_chances

    # Body of expectiminimax:
    return argmax(game.actions(state),
                  key=lambda a: chance_node(state, a),
                  default=None)
Exemplo n.º 11
0
def find_max_node(nodes):
    return nodes.index(argmax(nodes, key=lambda node: node.value))