Exemplo n.º 1
0
    def test_bias_update_to_dense(self):
        """
        test bias correction on matmul layer
        :return:
        """
        tf.compat.v1.reset_default_graph()

        inputs = tf.keras.Input(shape=(32, 32, 3,))
        x = tf.keras.layers.Flatten()(inputs)
        dense = tf.keras.layers.Dense(2, use_bias=False, activation=tf.nn.softmax, name="single_residual")(x)
        # pylint: disable=no-member
        _ = tf.nn.relu(dense)

        init = tf.compat.v1.global_variables_initializer()
        sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph())
        sess.run(init)

        dense_op = sess.graph.get_operation_by_name('single_residual/MatMul')
        self.assertTrue(BiasUtils.is_bias_none(dense_op))

        new_sess = BiasUtils.initialize_model_with_bias(sess, ['input_1'], ['Relu'])

        dense_op = new_sess.graph.get_operation_by_name('single_residual/MatMul')
        self.assertTrue(not BiasUtils.is_bias_none(dense_op))
        new_sess.close()
Exemplo n.º 2
0
    def test_bias_add_with_conv(self):
        """
        Test bias add on conv op
        :return:
        """

        tf.compat.v1.reset_default_graph()
        inputs = tf.keras.Input(shape=(32, 32, 3,), name="inputs")
        # create a conv without bias param
        conv_op = tf.keras.layers.Conv2D(32, (3, 3), use_bias=False)(inputs)
        bn_op = tf.keras.layers.BatchNormalization(fused=True)(conv_op)
        # pylint: disable=no-member
        _ = tf.nn.relu(bn_op)

        init = tf.compat.v1.global_variables_initializer()
        sess = tf.compat.v1.Session()
        sess.run(init)

        conv_op = sess.graph.get_operation_by_name('conv2d/Conv2D')
        self.assertTrue(BiasUtils.is_bias_none(conv_op))

        # new_sess = BiasUtils.initialize_model_with_bias(sess)
        shape = BiasUtils.get_shape(conv_op)
        numpy_data = np.random.rand(shape[0])
        BiasUtils.update_bias_for_op(sess, conv_op, bias_as_numpy_array=numpy_data)
        new_sess = save_and_load_graph('./temp_bn_fold', sess)
        conv_op = new_sess.graph.get_operation_by_name('conv2d/Conv2D')
        bias_as_numpy_data = BiasUtils.get_bias_as_numpy_data(new_sess, conv_op)

        assert(not BiasUtils.is_bias_none(conv_op))
        new_sess.close()
    def scale_cls_set_with_conv_layers(model: tf.compat.v1.Session, cls_set: Tuple[tf.Operation, tf.Operation]) -> np.ndarray:
        """
        API to invoke equalize layer params (update for weights and bias is in place)
        :param model: active tf.compat.v1.Session
        :param cls_set: Consecutive Conv layers Tuple whose weights and biases need to be equalized
        :return: Scaling factor S_12 for each conv layer pair: numpy array
        """

        with model.graph.as_default():
            for module in cls_set:
                if module.type not in ['Conv2D', 'DepthwiseConv2dNative']:
                    raise ValueError("Only conv layers are supported for cross layer equalization")

            # Create structs for holding layer weights and bias parameters
            prev_layer_params = libpymo.EqualizationParams()
            curr_layer_params = libpymo.EqualizationParams()

            # send as [Noc, Nic, kh, kw],  TF format is [kh, kw, Nic, Noc]
            prev_layer_params.weight = WeightTensorUtils.get_tensor_as_numpy_data(model, cls_set[0]). \
                transpose((3, 2, 0, 1)).reshape(-1)
            weight_shape = WeightTensorUtils.get_tensor_shape(cls_set[0])
            prev_layer_params.weightShape = [weight_shape[3], weight_shape[2], weight_shape[0], weight_shape[1]]
            prev_layer_params.isBiasNone = BiasUtils.is_bias_none(cls_set[0])

            # send as [Noc, Nic, kh, kw],  TF format is [kh, kw, Nic, Noc]
            curr_layer_params.weight = WeightTensorUtils.get_tensor_as_numpy_data(model, cls_set[1]). \
                transpose((3, 2, 0, 1)).reshape(-1)
            weight_shape = WeightTensorUtils.get_tensor_shape(cls_set[1])
            curr_layer_params.weightShape = [weight_shape[3], weight_shape[2], weight_shape[0], weight_shape[1]]

            if not BiasUtils.is_bias_none(cls_set[0]):
                prev_layer_params.bias = BiasUtils.get_bias_as_numpy_data(model, cls_set[0]).reshape(-1)
            else:
                prev_layer_params.isBiasNone = True

            scaling_factor = libpymo.scaleLayerParams(prev_layer_params, curr_layer_params)

            # convert received formats back to TF
            # TF format is [kh, kw, Nic, Noc]
            numpy_weight_reshaped = np.reshape(prev_layer_params.weight, prev_layer_params.weightShape). \
                transpose((2, 3, 1, 0))
            WeightTensorUtils.update_tensor_for_op(model, cls_set[0], numpy_weight_reshaped)

            numpy_weight_reshaped = np.reshape(curr_layer_params.weight, curr_layer_params.weightShape). \
                transpose((2, 3, 1, 0))
            WeightTensorUtils.update_tensor_for_op(model, cls_set[1], numpy_weight_reshaped)

            if not BiasUtils.is_bias_none(cls_set[0]):
                numpy_bias_reshaped = np.reshape(prev_layer_params.bias, BiasUtils.get_shape(cls_set[0]))
                BiasUtils.update_bias_for_op(model, cls_set[0], numpy_bias_reshaped)

        return scaling_factor
Exemplo n.º 4
0
    def _get_conv_linear_params(model, layer_to_be_corrected):
        """
        Extract weights and bias of given conv/linear layer
        :param model: tf.compat.v1.Session type
        :param layer_to_be_corrected: conv/linear layer as tf.Operation
        :return: bias, weight and quantized weights as TensorParamBiasCorrection types
        """

        bias_tensor = libpymo.TensorParamBiasCorrection()

        # get weight tensor
        weight_tensor, _ = get_weight_tensor_with_shape(
            model, layer_to_be_corrected)

        if weight_tensor is None:
            logger.error('Weight tensor extraction failed for layer {%s}',
                         layer_to_be_corrected.name)

        # get bias tensor, at this point we have initialized model layers to have bias add param.
        assert not BiasUtils.is_bias_none(layer_to_be_corrected)

        bias_tensor.data = BiasUtils.get_bias_as_numpy_data(
            model, layer_to_be_corrected)
        bias_tensor.shape = BiasUtils.get_shape(layer_to_be_corrected)

        return bias_tensor, weight_tensor
Exemplo n.º 5
0
        def create_conv2d_dense_type_params(my_op: Op):
            """ Create products for conv2d, dense, depthwise conv2d, and similar """
            tf_op = my_op.get_module()

            weight_op = WeightTensorUtils.get_read_op(tf_op)
            create_and_connect_product('kernel', weight_op.outputs[0].shape, my_op, weight_op.outputs[0])

            if not BiasUtils.is_bias_none(tf_op):
                bias_op = BiasUtils.get_bias_read_op(tf_op)
                create_and_connect_product('bias', bias_op.outputs[0].shape, my_op, bias_op.outputs[0])
    def test_equalize_with_custom_model_no_bias(self):
        """
        Test equalize with a custom model with conv without bias param
        """
        tf.compat.v1.reset_default_graph()

        sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph())

        with sess.as_default():
            inputs = tf.keras.Input(shape=(
                32,
                32,
                3,
            ))

            conv_op = tf.keras.layers.Conv2D(32, (3, 3),
                                             use_bias=False)(inputs)
            bn_op = tf.keras.layers.BatchNormalization(fused=True)(conv_op)
            relu_1 = tf.nn.relu(bn_op)

            conv2_op = tf.keras.layers.Conv2D(32, (3, 3),
                                              use_bias=False)(relu_1)
            bn_op_2 = tf.keras.layers.BatchNormalization(fused=True)(
                conv2_op, training=False)
            relu_2 = tf.nn.relu(bn_op_2)

            init = tf.compat.v1.global_variables_initializer()
            sess.run(init)

            old_conv_op = sess.graph.get_operation_by_name('conv2d/Conv2D')
            self.assertTrue(BiasUtils.is_bias_none(old_conv_op))

            conv_op = sess.graph.get_operation_by_name('conv2d/Conv2D')
            new_sess = equalize_model(sess, conv_op.inputs[0].op.name,
                                      'Relu_1')

            new_conv_op = new_sess.graph.get_operation_by_name('conv2d/Conv2D')
            bias = BiasUtils.get_bias_as_numpy_data(new_sess, new_conv_op)
            self.assertFalse(BiasUtils.is_bias_none(new_conv_op))
        sess.close()
    def test_bias_add_custom_model(self):
        """ test update bias when no bias present """

        tf.compat.v1.reset_default_graph()
        tf.set_random_seed(0)
        inputs = tf.keras.Input(shape=(
            32,
            32,
            3,
        ))

        conv_op = tf.keras.layers.Conv2D(32, (3, 3), use_bias=False)(inputs)

        conv2_op = tf.keras.layers.Conv2D(32, (3, 3), use_bias=False)(inputs)
        relu2 = tf.nn.relu(conv2_op)

        add = tf.keras.layers.add([conv_op, relu2])
        relu = tf.nn.relu(add)

        init = tf.compat.v1.global_variables_initializer()
        sess = tf.compat.v1.Session()
        sess.run(init)

        shape = WeightTensorUtils.get_tensor_shape(conv_op.op)
        np.random.seed(0)
        bias_data = np.random.rand(shape[3])

        assert BiasUtils.is_bias_none(conv_op.op)
        BiasUtils.update_bias_for_op(sess, conv_op.op, bias_data)
        n_sess = aimet_tensorflow.utils.graph_saver.save_and_load_graph(
            './test_update', sess)

        conv_op_updated = n_sess.graph.get_operation_by_name(conv_op.op.name)
        assert not BiasUtils.is_bias_none(conv_op_updated)
        updated_bias = BiasUtils.get_bias_as_numpy_data(
            n_sess, conv_op_updated)
        self.assertTrue(np.allclose(updated_bias, bias_data))
        sess.close()
Exemplo n.º 8
0
def _get_bias_tensor(sess: tf.compat.v1.Session,
                     conv: tf.Operation) -> libpymo.TensorParams():
    """
    Get bias tensor in given conv op.
    Packs bias in the format required for BN fold
    (libpymo.TensorParams()).
    :param sess: current session
    :param conv: conv op
    :return: return bias param in libpymo.TensorParams() format.
    """

    # Bias tensor
    bias_tensor = libpymo.TensorParams()
    with sess.graph.as_default():
        if not BiasUtils.is_bias_none(conv):
            bias_tensor.shape = BiasUtils.get_shape(conv)
            bias_tensor.data = BiasUtils.get_bias_as_numpy_data(sess, conv)

    return bias_tensor
    def test_equalize_fold_forward(self):
        """
        Test equalize on a model with a forward bn fold
        """
        tf.compat.v1.reset_default_graph()
        inputs = tf.keras.Input(shape=(
            32,
            32,
            3,
        ), name="inputs")
        conv_op = tf.keras.layers.Conv2D(32, (3, 3))(inputs)
        r_op = tf.nn.relu(conv_op)
        bn_op = tf.keras.layers.BatchNormalization(fused=True)(r_op)
        conv2_op = tf.keras.layers.Conv2D(32, (3, 3))(bn_op)
        conv3_op = tf.keras.layers.Conv2D(32, (3, 3))(conv2_op)
        _ = tf.nn.relu(conv3_op)

        init = tf.compat.v1.global_variables_initializer()
        sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph())
        sess.run(init)
        old_conv_op = sess.graph.get_operation_by_name('conv2d/Conv2D')
        conv_bias_data_before_fold = BiasUtils.get_bias_as_numpy_data(
            sess, old_conv_op)

        conv_op = sess.graph.get_operation_by_name('conv2d/Conv2D')

        new_sess = equalize_model(sess, conv_op.inputs[0].op.name, 'Relu_1')
        new_conv_op = new_sess.graph.get_operation_by_name('conv2d/Conv2D')
        self.assertFalse(BiasUtils.is_bias_none(new_conv_op))
        conv_bias_data_after_fold = BiasUtils.get_bias_as_numpy_data(
            new_sess, new_conv_op)

        for i in range(len(conv_bias_data_before_fold)):
            self.assertTrue(
                conv_bias_data_before_fold[i] <= conv_bias_data_after_fold[i])

        sess.close()
Exemplo n.º 10
0
    def _call_mo_correct_bias(corrected_model: tf.compat.v1.Session,
                              layer_name: str,
                              bias_correction: libpymo.BiasCorrection,
                              bias_shape: int):
        """
         helper to perform bias correction using cpp backend
        :param corrected_model: active tensorflow session with corrected model as tf.compat.v1.Session
        :param layer_name: name of the layer to be bias corrected
        :param bias_correction: bias correction inputs
        :param bias_shape: shape of bias associated with the layer
        :return: None, updates bias for the given layer
        """

        bias_tensor = libpymo.TensorParamBiasCorrection()

        layer_to_be_corrected = corrected_model.graph.get_operation_by_name(
            layer_name)

        with corrected_model.graph.as_default():
            assert (layer_to_be_corrected.type
                    in ['Conv2D', 'DepthwiseConv2dNative', 'MatMul'])

            if BiasUtils.is_bias_none(layer_to_be_corrected):
                bias_tensor.data = np.zeros(bias_shape)
            else:
                # read bias from given op
                bias_tensor.data = BiasUtils.get_bias_as_numpy_data(
                    corrected_model, layer_to_be_corrected)

            # perform bias correction
            bias_correction.correctBias(bias_tensor)

            # this api updates bias or adds bias add to layer if not present
            BiasUtils.update_bias_for_op(corrected_model,
                                         layer_to_be_corrected,
                                         np.array(bias_tensor.data))
Exemplo n.º 11
0
def _fold_given_auto_selected_batch_norms(
        sess: tf.compat.v1.Session,
        layer_pairs: List[PairType]) -> tf.compat.v1.Session:
    """
    Fold a given set of batch_norm layers into conv layers

    :param sess: tf.compat.v1.Session
    :param layer_pairs: pair of conv and bn layers
    :return: new session with updated graph
    """

    with sess.graph.as_default():

        for pair in layer_pairs:

            conv_linear, batchnorm, is_batch_norm_second = pair

            assert conv_linear.type in [
                'Conv2D', 'DepthwiseConv2dNative', 'MatMul'
            ]

            #  check flag
            is_bias_valid = False

            if not BiasUtils.is_bias_none(conv_linear):
                is_bias_valid = True

            bn_params = _get_bn_params(sess, batchnorm.op)
            weight_tensor = _get_weight_tensor_transpose_reshape(
                sess, conv_linear)
            bias_tensor = _get_bias_tensor(sess, conv_linear)

            bias = libpymo.fold(bn_params, weight_tensor, bias_tensor,
                                is_bias_valid, is_batch_norm_second)

            # converting back to TF format [kh, kw, Nic, Noc] before updating weight tensor value
            if conv_linear.type == 'DepthwiseConv2dNative':
                # Depthwise conv layers in TF have outputs(Noc) set to 1.
                # we send in format [Nic, Noc, kh, kw]
                numpy_weight_reshaped = np.reshape(
                    weight_tensor.data, weight_tensor.shape).transpose(
                        (2, 3, 0, 1))
            elif conv_linear.type == 'MatMul':
                # o, i - convert to i , o
                numpy_weight_reshaped = np.reshape(
                    weight_tensor.data,
                    [weight_tensor.shape[0], weight_tensor.shape[1]
                     ]).transpose(1, 0)
            else:
                # conv2D case
                # we sent in format [Noc, Nic, kh, kw]
                numpy_weight_reshaped = np.reshape(
                    weight_tensor.data, weight_tensor.shape).transpose(
                        (2, 3, 1, 0))

            WeightTensorUtils.update_tensor_for_op(sess, conv_linear,
                                                   numpy_weight_reshaped)

            # remove bn op
            BNUtils.skip_bn_op(sess, batchnorm.op, batchnorm.in_tensor,
                               batchnorm.out_tensor)

            # update bias tensor, even in case there was no existing bias add op in given conv2D op.
            bias_tensor_shape = [weight_tensor.shape[0]]
            numpy_bias_reshaped = np.reshape(bias, bias_tensor_shape)
            BiasUtils.update_bias_for_op(sess, conv_linear,
                                         numpy_bias_reshaped)

        # we edited the graph, so we should load and save for the metagraph associated with the session to be updated
        after_bn_fold_sess = save_and_load_graph('./temp_bn_fold', sess)

    return after_bn_fold_sess
Exemplo n.º 12
0
    def test_depthwise_custom(self):
        """ test depthwise conv2d layer withput bias """

        tf.compat.v1.reset_default_graph()
        inputs = tf.keras.Input(shape=(
            10,
            10,
            3,
        ))
        x = tf.keras.layers.Conv2D(10, (1, 1))(inputs)
        with tf.compat.v1.variable_scope("standalone_depthwise"):
            x = tf.compat.v1.nn.depthwise_conv2d_native(
                x,
                tf.compat.v1.get_variable(
                    initializer=tf.random.truncated_normal(shape=(3, 3, 10,
                                                                  1)),
                    name="depthwise_kernel"), [1, 1, 1, 1], 'VALID')
        _ = tf.nn.relu(x)

        init = tf.compat.v1.global_variables_initializer()
        sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph())
        sess.run(init)

        op_list = sess.graph.get_operations()
        depthwise_conv_op = sess.graph.get_operation_by_name(
            'standalone_depthwise/DepthwiseConv2dNative')
        input_op = sess.graph.get_operation_by_name('input_1')
        output_op = sess.graph.get_operation_by_name('Relu')

        input_op_names = ['input_1']
        output_op_names = [output_op.name]

        batch_size = 1
        num_samples = 10

        np.random.seed(0)
        shape = input_op.outputs[0].shape

        dataset = np.random.rand(10, 1, shape[1], shape[2], shape[3])
        dataset = tf.convert_to_tensor(dataset)
        dataset = tf.data.Dataset.from_tensor_slices(dataset)

        quant_params = QuantParams(use_cuda=False)
        bias_correction_params = BiasCorrectionParams(
            batch_size=batch_size,
            num_quant_samples=num_samples,
            num_bias_correct_samples=num_samples,
            input_op_names=input_op_names,
            output_op_names=output_op_names)

        assert (BiasUtils.is_bias_none(depthwise_conv_op))

        new_sess = BiasCorrection.correct_bias(sess, bias_correction_params,
                                               quant_params, dataset)

        updated_conv_op = new_sess.graph.get_operation_by_name(
            'standalone_depthwise/DepthwiseConv2dNative')

        assert (not BiasUtils.is_bias_none(updated_conv_op))

        sess.close()
        new_sess.close()
Exemplo n.º 13
0
    def bias_correction_per_layer(
            reference_model: tf.compat.v1.Session,
            corrected_model: tf.compat.v1.Session,
            bias_correct_params: BiasCorrectionParams,
            layer_name_to_be_corrected: str, quant_params: QuantParams,
            data_set: tf.data.Dataset) -> tf.compat.v1.Session:
        """
         Helper function to perform empirical bias correction per layer.

        :param reference_model: active tensorflow session for reference model
        :param corrected_model: active tensorflow session for corrected model
        :param bias_correct_params: bias correction params
        :param layer_name_to_be_corrected: name of layer on which bias correction is to be performed
        :param quant_params: Quantization specific params from user
        :return: None, updates corrected model in-place.

        """

        # Quantize model
        quantize_model = BiasCorrection._get_quantized_model(
            corrected_model, quant_params, bias_correct_params.input_op_names,
            bias_correct_params.output_op_names,
            bias_correct_params.num_quant_samples,
            bias_correct_params.batch_size, data_set)

        ref_layer = reference_model.graph.get_operation_by_name(
            layer_name_to_be_corrected)

        bias_correction = libpymo.BiasCorrection()
        logger.info('Correcting layer %s', ref_layer.name)

        n_batches_bias_correction = int(
            np.ceil(bias_correct_params.num_bias_correct_samples /
                    bias_correct_params.batch_size))

        reduced_dataset_iter = iter_first_x(data_set,
                                            n_batches_bias_correction)

        for batch_input in reduced_dataset_iter:
            # reference model without corrected nodes
            reference_output_batch = BiasCorrection._get_output_data(
                reference_model, bias_correct_params.input_op_names,
                ref_layer.name, batch_input)

            quantized_model_output_batch = BiasCorrection._get_output_data(
                quantize_model, bias_correct_params.input_op_names,
                ref_layer.name, batch_input)

            if ref_layer.type == 'MatMul':
                extended_shape = np.concatenate(
                    (reference_output_batch.shape, np.array([1, 1])))
                reference_output_batch = reference_output_batch.reshape(
                    extended_shape)
                quantized_model_output_batch = quantized_model_output_batch.reshape(
                    extended_shape)

        # we need to reshape from tensorflow shape NxHxWxC to NxCxHxW
        bias_correction.storePreActivationOutput(
            np.ascontiguousarray(reference_output_batch.transpose(0, 3, 1, 2)))
        bias_correction.storeQuantizedPreActivationOutput(
            np.ascontiguousarray(
                quantized_model_output_batch.transpose(0, 3, 1, 2)))

        bias_shape = None
        # get shape for bias if the layer does not have bias
        if BiasUtils.is_bias_none(ref_layer):
            if ref_layer.type == 'MatMul':
                bias_shape = reference_output_batch.shape[1]
            elif ref_layer.type in ['Conv2D', 'DepthwiseConv2dNative']:
                # for conv2d or depthwise conv2d
                bias_shape = reference_output_batch.shape[3]

        # bias is to be corrected in the corrected model graph
        BiasCorrection._call_mo_correct_bias(corrected_model, ref_layer.name,
                                             bias_correction, bias_shape)

        logger.info('Completed empirical bias correction for layer  %s',
                    ref_layer.name)
Exemplo n.º 14
0
    def test_bias_correction_model_tf_with_no_bias(self):
        """
        Test bias correction for custom model
        """
        tf.compat.v1.reset_default_graph()
        inputs = tf.keras.Input(shape=(
            32,
            32,
            3,
        ))

        conv_op = tf.keras.layers.Conv2D(32, (3, 3), use_bias=False)(inputs)
        relu_1 = tf.nn.relu(conv_op)

        conv2_op = tf.keras.layers.Conv2D(32, (3, 3), use_bias=False)(relu_1)
        relu_2 = tf.nn.relu(conv2_op)

        conv3_op = tf.keras.layers.Conv2D(32, (3, 3), use_bias=False)(relu_2)
        _ = tf.nn.relu(conv3_op)

        init = tf.compat.v1.global_variables_initializer()
        sess = tf.compat.v1.Session()
        sess.run(init)

        # updating random bias and weight for one conv
        np.random.seed(0)
        conv_op = sess.graph.get_operation_by_name('conv2d/Conv2D')
        w_shape = WeightTensorUtils.get_tensor_shape(conv_op)
        w_shape = WeightTensorUtils.get_tensor_shape(conv_op)
        w_numpy_data = np.random.rand(w_shape[0], w_shape[1], w_shape[2],
                                      w_shape[3])

        # save and load the updated graph after high bias fold update
        n_sess = save_and_load_graph('./test_update', sess)
        conv_op = n_sess.graph.get_operation_by_name('conv2d/Conv2D')

        input_op_name = conv_op.inputs[0].op.name
        output_op = n_sess.graph.get_operation_by_name('Relu_2')

        input_op_names = [input_op_name]
        output_op_names = [output_op.name]

        batch_size = 1
        num_samples = 10

        np.random.seed(0)
        shape = conv_op.inputs[0].shape

        dataset = np.random.rand(10, 1, shape[1], shape[2], shape[3])
        dataset = tf.convert_to_tensor(dataset)
        dataset = tf.data.Dataset.from_tensor_slices(dataset)

        quant_params = QuantParams(quant_mode='tf', use_cuda=False)
        bias_correction_params = BiasCorrectionParams(
            batch_size=batch_size,
            num_quant_samples=num_samples,
            num_bias_correct_samples=num_samples,
            input_op_names=input_op_names,
            output_op_names=output_op_names)

        conv_op = sess.graph.get_operation_by_name('conv2d_1/Conv2D')
        assert (BiasUtils.is_bias_none(conv_op))
        new_sess = BiasCorrection.correct_bias(
            n_sess,
            bias_correction_params,
            quant_params,
            dataset,
            perform_only_empirical_bias_corr=False)

        conv_op = new_sess.graph.get_operation_by_name('conv2d_1/Conv2D')
        assert (not BiasUtils.is_bias_none(conv_op))

        sess.close()
        n_sess.close()
        new_sess.close()
    def scale_cls_set_with_depthwise_layers(model: tf.compat.v1.Session,
                                            cls_set: Tuple[tf.Operation,
                                                           tf.Operation,
                                                           tf.Operation]) -> [np.ndarray, np.ndarray]:
        """
        API to invoke equalize layer params for depth wise separable layers(update for weights and bias is in place)
        :param model: active tf.compat.v1.Session
        :param cls_set: Consecutive Conv layers whose weights and biases need to be equalized.
                        Second Conv layer is a depth-wise conv and third conv layer is point-wise conv
        :return: Scaling factors S_12 and S_23 : numpy arrays
        """

        # make sure you define the session and graph scope before making any graph updates.
        with model.graph.as_default():
            for module in cls_set:
                if module.type not in ['Conv2D', 'DepthwiseConv2dNative']:
                    raise ValueError("Only conv layers are supported for cross layer equalization")

            # Create structs for holding layer weights and bias parameters
            prev_layer_params = libpymo.EqualizationParams()
            curr_layer_params = libpymo.EqualizationParams()
            next_layer_params = libpymo.EqualizationParams()

            # send as [Noc, Nic, kh, kw],  TF format is [kh, kw, Nic, Noc]
            prev_layer_params.weight = WeightTensorUtils.get_tensor_as_numpy_data(model, cls_set[0]). \
                transpose((3, 2, 0, 1)).reshape(-1)
            weight_shape = WeightTensorUtils.get_tensor_shape(cls_set[0])
            prev_layer_params.weightShape = [weight_shape[3], weight_shape[2], weight_shape[0], weight_shape[1]]
            prev_layer_params.isBiasNone = BiasUtils.is_bias_none(cls_set[0])

            # depthwise layer outputs is set to 1 in TF
            # send as [Nic, Noc, kh, kw],  TF format is [kh, kw, Nic, Noc]
            curr_layer_params.weight = WeightTensorUtils.get_tensor_as_numpy_data(model, cls_set[1]). \
                transpose((2, 3, 0, 1)).reshape(-1)
            weight_shape = WeightTensorUtils.get_tensor_shape(cls_set[1])

            # depthwise layer outputs is set to 1 in TF
            # send as [Nic, Noc, kh, kw],  TF format is [kh, kw, Nic, Noc]
            curr_layer_params.weightShape = [weight_shape[2], weight_shape[3], weight_shape[0], weight_shape[1]]
            curr_layer_params.isBiasNone = BiasUtils.is_bias_none(cls_set[1])

            # send as [Noc, Nic, kh, kw] , TF format is [kh, kw, Nic, Noc]
            next_layer_params.weight = WeightTensorUtils.get_tensor_as_numpy_data(model, cls_set[2]). \
                transpose((3, 2, 0, 1)).reshape(-1)
            weight_shape = WeightTensorUtils.get_tensor_shape(cls_set[2])
            next_layer_params.weightShape = [weight_shape[3], weight_shape[2], weight_shape[0], weight_shape[1]]

            if not BiasUtils.is_bias_none(cls_set[0]):
                prev_layer_params.bias = BiasUtils.get_bias_as_numpy_data(model, cls_set[0]).reshape(-1)
            else:
                prev_layer_params.isBiasNone = True

            if not BiasUtils.is_bias_none(cls_set[1]):
                curr_layer_params.bias = BiasUtils.get_bias_as_numpy_data(model, cls_set[1]).reshape(-1)
            else:
                curr_layer_params.isBiasNone = True

            scaling_params = libpymo.scaleDepthWiseSeparableLayer(prev_layer_params, curr_layer_params,
                                                                  next_layer_params)

            # convert received formats back to TF
            # TF format is [kh, kw, Nic, Noc]
            numpy_weight_reshaped_0 = np.reshape(prev_layer_params.weight, prev_layer_params.weightShape). \
                transpose((2, 3, 1, 0))
            WeightTensorUtils.update_tensor_for_op(model, cls_set[0], numpy_weight_reshaped_0)

            # depthwise layer
            numpy_weight_reshaped_1 = np.reshape(curr_layer_params.weight, curr_layer_params.weightShape). \
                transpose((2, 3, 0, 1))
            WeightTensorUtils.update_tensor_for_op(model, cls_set[1], numpy_weight_reshaped_1)

            numpy_weight_reshaped_2 = np.reshape(next_layer_params.weight, next_layer_params.weightShape). \
                transpose((2, 3, 1, 0))
            WeightTensorUtils.update_tensor_for_op(model, cls_set[2], numpy_weight_reshaped_2)

            if not BiasUtils.is_bias_none(cls_set[0]):
                numpy_bias_reshaped = np.reshape(prev_layer_params.bias, BiasUtils.get_shape(cls_set[0]))
                BiasUtils.update_bias_for_op(model, cls_set[0], numpy_bias_reshaped)

            if not BiasUtils.is_bias_none(cls_set[1]):
                numpy_bias_reshaped = np.reshape(curr_layer_params.bias, BiasUtils.get_shape(cls_set[1]))
                BiasUtils.update_bias_for_op(model, cls_set[1], numpy_bias_reshaped)

        return scaling_params.scalingMatrix12, scaling_params.scalingMatrix23
    def bias_fold(sess: tf.compat.v1.Session, folded_pairs: List[Tuple[tf.Operation, tf.Operation]],
                  cls_set_info_list: List[ClsSetInfo]) -> tf.compat.v1.Session:

        """
        Folds bias values greater than 3 * sigma to next layer's bias

        :param sess: Current session
        :param folded_pairs: Key: Conv/Linear layer Value: Corresponding folded BN layer
        :param cls_set_info_list: List of info elements for each cls set
        :return: updated session after graph updates from hbf

        """

        with sess.graph.as_default():

            # refresh the references saved during bn fold and cls.
            cls_set_info_list, bn_layers = HighBiasFold._refresh_layer_set_info_before_hbf(sess, folded_pairs,
                                                                                           cls_set_info_list)

            if not bn_layers:
                logger.error('High Bias folding is not supported for models without BatchNorm Layers')
                return sess

            for cls_set_info in cls_set_info_list:

                for cls_pair_info in cls_set_info.cls_pair_info_list:

                    # check if we have a corresponding bn layer
                    if cls_pair_info.layer1.name in bn_layers.keys():

                        # check if bias present in given conv2D(s)
                        if BiasUtils.is_bias_none(cls_pair_info.layer1) or BiasUtils.is_bias_none(cls_pair_info.layer2):
                            continue

                        prev_layer_params = libpymo.LayerParams()
                        curr_layer_params = libpymo.LayerParams()

                        scaling_parameter = cls_pair_info.scale_factor

                        prev_layer_bn_params =\
                            HighBiasFold.get_bn_params_for_bias_fold(sess,
                                                                     bn_layers[cls_pair_info.layer1.name],
                                                                     scaling_parameter)

                        prev_layer_params.activationIsRelu = cls_pair_info.relu_activation_between_layers
                        prev_layer_params.bias =\
                            BiasUtils.get_bias_as_numpy_data(sess, cls_pair_info.layer1).reshape(-1)
                        prev_bias_shape = BiasUtils.get_shape(cls_pair_info.layer1)

                        weight_shape = WeightTensorUtils.get_tensor_shape(cls_pair_info.layer1)
                        prev_layer_params.weightShape = [weight_shape[3], weight_shape[2], weight_shape[0],
                                                         weight_shape[1]]

                        curr_layer_params.bias =\
                            BiasUtils.get_bias_as_numpy_data(sess, cls_pair_info.layer2).reshape(-1)
                        curr_bias_shape = BiasUtils.get_shape(cls_pair_info.layer2)

                        weight_shape = WeightTensorUtils.get_tensor_shape(cls_pair_info.layer2)

                        # Handle depthwise layer case
                        # for a depthwise layer num outputs is set to 1 in TF
                        # send as [Nic, Noc, kh, kw],  TF format is [kh, kw, Nic, Noc]
                        if cls_pair_info.layer2.type in ['DepthwiseConv2dNative']:
                            c_wt = WeightTensorUtils.get_tensor_as_numpy_data(
                                sess, cls_pair_info.layer2).transpose((2, 3, 0, 1))
                            curr_layer_params.weight = c_wt.reshape(-1)
                            curr_layer_params.weightShape = [weight_shape[2], weight_shape[3], weight_shape[0],
                                                             weight_shape[1]]

                        else:
                            # send as [Noc, Nic, kh, kw],  TF format is [kh, kw, Nic, Noc]
                            c_wt = WeightTensorUtils.get_tensor_as_numpy_data(
                                sess, cls_pair_info.layer2).transpose((3, 2, 0, 1))
                            curr_layer_params.weight = c_wt.reshape(-1)
                            curr_layer_params.weightShape = [weight_shape[3], weight_shape[2], weight_shape[0],
                                                             weight_shape[1]]

                        libpymo.updateBias(prev_layer_params, curr_layer_params, prev_layer_bn_params)

                        BiasUtils.update_bias_for_op(sess, cls_pair_info.layer1, np.reshape(prev_layer_params.bias,
                                                                                            prev_bias_shape))

                        BiasUtils.update_bias_for_op(sess, cls_pair_info.layer2, np.reshape(curr_layer_params.bias,
                                                                                            curr_bias_shape))
                    else:
                        logger.info("skipping layer: {%s}", cls_pair_info.layer1.name)

        # save and load the updated graph after high bias fold update
        aftr_hbf_sess = save_and_load_graph('./temp_hbf', sess)

        return aftr_hbf_sess
Exemplo n.º 17
0
    def test_bias_update_to_dense(self):
        """
        test bias correction on matmul layer
        :return:
        """
        tf.compat.v1.reset_default_graph()

        inputs = tf.keras.Input(shape=(
            32,
            32,
            3,
        ))
        x = tf.keras.layers.Flatten()(inputs)
        dense = tf.keras.layers.Dense(2,
                                      use_bias=False,
                                      activation=tf.nn.softmax,
                                      name="single_residual")(x)
        _ = tf.nn.relu(dense)

        init = tf.compat.v1.global_variables_initializer()
        sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph())
        sess.run(init)

        op_list = sess.graph.get_operations()

        input_op = sess.graph.get_operation_by_name('input_1')
        output_op = sess.graph.get_operation_by_name('Relu')

        input_op_names = ['input_1']
        output_op_names = [output_op.name]

        op_list = sess.graph.get_operations()

        batch_size = 1
        num_samples = 10

        np.random.seed(0)
        shape = input_op.outputs[0].shape

        dataset = np.random.rand(10, 1, shape[1], shape[2], shape[3])
        dataset = tf.convert_to_tensor(dataset)
        dataset = tf.data.Dataset.from_tensor_slices(dataset)

        quant_params = QuantParams(use_cuda=False)
        bias_correction_params = BiasCorrectionParams(
            batch_size=batch_size,
            num_quant_samples=num_samples,
            num_bias_correct_samples=num_samples,
            input_op_names=input_op_names,
            output_op_names=output_op_names)

        dense_conv_op = sess.graph.get_operation_by_name(
            'single_residual/MatMul')
        assert (BiasUtils.is_bias_none(dense_conv_op))

        new_sess = BiasCorrection.correct_bias(sess, bias_correction_params,
                                               quant_params, dataset)
        updated_dense_conv_op = new_sess.graph.get_operation_by_name(
            'single_residual/MatMul')
        bias = BiasUtils.get_bias_as_numpy_data(new_sess,
                                                updated_dense_conv_op)
        assert (not BiasUtils.is_bias_none(updated_dense_conv_op))

        sess.close()
        new_sess.close()