Exemplo n.º 1
0
def read_model(i, path, wedge_ang1, wedge_ang2, wedge_dir):
    import aitom.image.vol.wedge.util as W
    result = {'i':i}
    f = mrc.open(path)
    size = f.data.shape[0]
    result['observed'] = fourier_transform(f.data)
    mask = W.wedge_mask(size=f.data.shape, ang1=wedge_ang1, ang2=wedge_ang2, direction=wedge_dir)
    result['mask'] = mask
    return result
Exemplo n.º 2
0
def single_average(subtom):
    print('subtom_type=', type(subtom))
    assert len(subtom) == 100
    print('subtom[0]_type=', type(subtom[0]))
    average = True

    test_dir = './tmp/cls-test/' + str(uuid.uuid4())  # test dir
    if os.path.exists(test_dir):
        shutil.rmtree(test_dir)
    os.makedirs(test_dir)

    dj_file = os.path.join(test_dir, 'data.pickle')
    img_db_file = os.path.join(test_dir, 'image.db')

    v_num = 100  # the number of each class
    v_dim_siz = 32
    wedge_angle = 30
    mask_id = str(uuid.uuid4())
    dj = []
    class_num = 1

    for model_id in range(class_num):
        for v_i in range(v_num):
            ang_t = [_ for _ in N.random.random(3) * (N.pi * 2)]
            # loc_t = TGA.random_translation(size=[v_dim_siz]*3, proportion=0.2)
            loc_t = [0.0, 0.0, 0.0]
            v_id = str(uuid.uuid4())
            dj.append({
                'subtomogram': v_id,
                'mask': mask_id,
                'angle': ang_t,
                'loc': loc_t,
                'model_id': model_id
            })
    AIF.pickle_dump(dj, dj_file)

    sim_op = {
        'model': {
            'missing_wedge_angle': wedge_angle,
            'titlt_angle_step': 1,
            'SNR': 1000,
            'band_pass_filter': False,
            'use_proj_mask': False
        },
        'ctf': {
            'pix_size': 1.0,
            'Dz': -5.0,
            'voltage': 300,
            'Cs': 2.0,
            'sigma': 0.4
        }
    }

    img_db = TIDL.LSM(img_db_file)
    index = 0
    for d in dj:
        img_db[d['subtomogram']] = subtom[index].astype(N.float)
        # print(img_db[d['subtomogram']].shape)
        index = index + 1

    import aitom.image.vol.wedge.util as TIVWU
    img_db[mask_id] = TIVWU.wedge_mask(size=[v_dim_siz] * 3, ang1=wedge_angle)
    print('file generation complete')

    out_dir = os.path.join(test_dir, 'out')
    if os.path.exists(out_dir): shutil.rmtree(out_dir)
    os.makedirs(out_dir)
    from aitom.classify.align.simple_iterative.classify import randomize_orientation
    from aitom.classify.align.simple_iterative.classify import export_avgs
    if average:
        import aitom.average.align.simple_iterative.average as avg
        op = {}
        op['option'] = {'pass_num': 20}  # the number of iterations
        op['data_checkpoint'] = os.path.join(out_dir, 'djs.pickle')
        op['average'] = {}
        op['average']['mask_count_threshold'] = 2
        op['average']['checkpoint'] = os.path.join(out_dir, 'avgs.pickle')

        dj = AIF.pickle_load(os.path.join(test_dir, 'data.pickle'))
        img_db = TIDL.LSM(os.path.join(test_dir, 'image.db'), readonly=True)

        randomize_orientation(dj)
        avg.average(dj_init=dj, img_db=img_db, op=op)

        export_avgs(AIF.pickle_load(os.path.join(out_dir, 'avgs.pickle')),
                    out_dir=os.path.join(out_dir, 'avgs-export'))
        print('averaging done')

    # visualization
    # test_dir = './tmp/cls-test/'+str(uuid.uuid4())  # test dir
    avgs = pickle_load(os.path.join(test_dir, 'out/avgs.pickle'))
    out_dir = os.path.join(test_dir, 'image')
    if os.path.exists(out_dir): shutil.rmtree(out_dir)
    os.makedirs(out_dir)
    for i in avgs.keys():
        v = avgs[i]['v']
        file_name = str(avgs[i]['pass_i']) + '_' + str(i) + '.png'
        save_png(cub_img(v)['im'], os.path.join(out_dir, file_name))
    print('images saved in', out_dir)
Exemplo n.º 3
0
            'Dz': -5.0,
            'voltage': 300,
            'Cs': 2.0,
            'sigma': 0.4
        }
    }

    img_db = TIDL.LSM(img_db_file)
    index = 0
    for d in dj:
        img_db[d['subtomogram']] = subtom[index].astype(N.float)
        # print(img_db[d['subtomogram']].shape)
        index = index + 1

    import aitom.image.vol.wedge.util as TIVWU
    img_db[mask_id] = TIVWU.wedge_mask(size=[v_dim_siz] * 3, ang1=wedge_angle)
    print('file generation complete')

    out_dir = os.path.join(test_dir, 'out')
    if os.path.exists(out_dir): shutil.rmtree(out_dir)
    os.makedirs(out_dir)
    from aitom.classify.align.simple_iterative.classify import randomize_orientation
    from aitom.classify.align.simple_iterative.classify import export_avgs
    if classify:  # classification and averaging
        import aitom.classify.align.simple_iterative.classify as clas
        class_num = 2
        op = {}
        op['option'] = {'pass_num': 20}  # the number of iterations
        op['data_checkpoint'] = os.path.join(out_dir, 'djs.pickle')
        op['dim_reduction'] = {}
        op['dim_reduction']['pca'] = {
Exemplo n.º 4
0
from aitom.image.vol.wedge.util import wedge_mask


def fourier_transform(v):
    return fftshift(fftn(v))


image_db = LSM('data/aitom_demo_subtomograms.db')  # Build a database file

with open('data/aitom_demo_subtomograms.pickle', 'rb') as f:
    # Load demo subtomograms pickle file
    subtomograms = pickle.load(f, encoding='iso-8859-1')

dj = []  # Key file for the database

m = wedge_mask([32, 32, 32], ang1=30, sphere_mask=True,
               verbose=False)  # Subtomogram missing wedge masks

for s in subtomograms['5T2C_data']:
    # Save fourier transformed subtomogram data
    v = fourier_transform(s)
    s1 = str(uuid.uuid4())
    s2 = str(uuid.uuid4())
    # Save a subtomogram to the database according to a key
    image_db[s1] = v
    # Save a subtomogram mask to the database according to a key
    image_db[s2] = m

    dj.append({'v': s1, 'm': s2, 'id': '5T2C'})

for s in subtomograms['1KP8_data']:
    v = fourier_transform(s)