Exemplo n.º 1
0
    def __call__(self, objects, image_fn):
        basename = aitool.get_basename(image_fn)
        root = ET.Element("annotations")
        ET.SubElement(root, "folder").text = 'ROVOC'
        ET.SubElement(root, "filename").text = image_fn

        for data in objects:
            obj = ET.SubElement(root, "object")
            if self.classes is not None:
                ET.SubElement(
                    obj, "name").text = self.classes[data['category_id'] - 1]
            else:
                ET.SubElement(obj, "name").text = str(data['category_id'])
            ET.SubElement(obj, "type").text = "robndbox"

            bndbox = ET.SubElement(obj, "robndbox")
            thetaobb = data['thetaobb']
            cx, cy, w, h, theta = thetaobb
            ET.SubElement(bndbox, "cx").text = str(cx)
            ET.SubElement(bndbox, "cy").text = str(cy)
            ET.SubElement(bndbox, "w").text = str(w)
            ET.SubElement(bndbox, "h").text = str(h)
            ET.SubElement(bndbox, "angle").text = str(theta)

        tree = ET.ElementTree(root)
        tree.write(f"{self.output_dir}/{basename}.xml",
                   pretty_print=True,
                   xml_declaration=True,
                   encoding='utf-8')
Exemplo n.º 2
0
    def __call__(self, objects, image_fn):
        basename = aitool.get_basename(image_fn)
        root = ET.Element("annotations")
        ET.SubElement(root, "folder").text = 'VOC'
        ET.SubElement(root, "filename").text = image_fn

        for data in objects:
            obj = ET.SubElement(root, "object")
            if self.classes is not None:
                ET.SubElement(
                    obj, "name").text = self.classes[data['category_id'] - 1]
            else:
                ET.SubElement(obj, "name").text = str(data['category_id'])
            ET.SubElement(obj, "type").text = "bndbox"

            bndbox = ET.SubElement(obj, "bndbox")
            bbox = data['bbox']
            xmin, ymin, xmax, ymax = aitool.xywh2xyxy(bbox)
            ET.SubElement(bndbox, "xmin").text = str(xmin)
            ET.SubElement(bndbox, "ymin").text = str(ymin)
            ET.SubElement(bndbox, "xmax").text = str(xmax)
            ET.SubElement(bndbox, "ymax").text = str(ymax)

        tree = ET.ElementTree(root)
        tree.write(f"{self.output_dir}/{basename}.xml",
                   pretty_print=True,
                   xml_declaration=True,
                   encoding='utf-8')
Exemplo n.º 3
0
    def __init__(self,
                 ann_file,
                 classes=[''],
                 data_keys=['bbox', 'category_id', 'segmentation']):
        """parse coco annotation file

        Args:
            ann_file (str): coco annotation file
            classes (list, optional): class ids. Defaults to [''].
            data_keys (list, optional): parse which items. Defaults to ['bbox', 'category_id', 'segmentation'].
        """
        self.data_keys = data_keys
        self.coco = COCO(ann_file)
        self.img_ids = self.coco.get_img_ids()
        self.cat_ids = self.coco.get_cat_ids()
        self.categories = self.coco.dataset['categories']
        self.img_fns = []

        print("begin to parse the coco annotation file")
        self.objects, self.objects_with_id, self.img_name_with_id = dict(
        ), dict(), dict()
        for img_id in tqdm.tqdm(self.img_ids):
            img_info = self.coco.load_imgs([img_id])[0]
            img_name = aitool.get_basename(img_info['file_name'])
            self.img_fns.append(img_name)

            ann_ids = self.coco.get_ann_ids(img_ids=[img_id])
            ann_info = self.coco.load_anns(ann_ids)
            self.objects[img_name] = self._convert_items(ann_info, img_info)
            self.objects_with_id[img_id] = self.objects[img_name].copy()
            self.img_name_with_id[img_name] = img_id
Exemplo n.º 4
0
    def _get_image_list(self, k_fold=0):
        if self.imageset_file is not None:
            print(
                f"loading image list from imageset file: {self.imageset_file}")
            raise NotImplementedError
        else:
            print(f"loading image list from image dir: {self.image_dir}")
            random.seed(0)
            image_file_list = aitool.get_file_list(self.image_dir,
                                                   self.image_format)
            image_list = [
                aitool.get_basename(image_file)
                for image_file in image_file_list
            ]
            image_list.sort()
            random.shuffle(image_list)

        if k_fold == 0:
            if self.expand_image_list is None:
                return image_list
            else:
                return image_list + self.expand_image_list
        else:
            splitted_image_list = self._split_image_list(image_list, k_fold)
            return splitted_image_list
Exemplo n.º 5
0
    def __call__(self, objects, image_fn):
        basename = aitool.get_basename(image_fn)
        with open(f"{self.output_dir}/{basename}.txt", 'w') as f:
            for data in objects:
                if self.classes is not None:
                    object_info = [self.classes[data['category_id'] - 1]]
                else:
                    object_info = [str(data['category_id'])]

                pointobb = data['pointobb']
                object_info.extend([str(_) for _ in pointobb] + ['\n'])

                f.write(" ".join(object_info))
Exemplo n.º 6
0
    def __call__(self, objects, image_fn, team='CAPTAIN-VIPG-Plane'):
        basename = aitool.get_basename(image_fn)
        root = ET.Element("annotation")
        source = ET.SubElement(root, "source")
        ET.SubElement(source, "filename").text = basename + '.tif'
        ET.SubElement(source, "origin").text = 'GF2/GF3'

        research = ET.SubElement(root, "research")
        ET.SubElement(research, "version").text = "4.0"
        ET.SubElement(research, "provider").text = "Wuhan University"
        ET.SubElement(research, "author").text = team
        ET.SubElement(
            research, "pluginname"
        ).text = "Airplane Detection and Recognition in Optical Images"
        ET.SubElement(research, "pluginclass").text = "Detection"
        ET.SubElement(research, "time").text = "2020-07-2020-11"

        objects_handle = ET.SubElement(root, "objects")

        for data in objects:
            obj = ET.SubElement(objects_handle, "object")
            ET.SubElement(obj, "coordinate").text = "pixel"
            ET.SubElement(obj, "type").text = "rectangle"
            ET.SubElement(obj, "description").text = "None"

            possibleresult = ET.SubElement(obj, "possibleresult")
            if self.classes is not None:
                ET.SubElement(possibleresult,
                              "name").text = self.classes[data['category_id'] -
                                                          1]
            else:
                ET.SubElement(possibleresult,
                              "name").text = str(data['category_id'])
            ET.SubElement(possibleresult,
                          "probability").text = str(data['score'])

            points = ET.SubElement(obj, "points")
            pointobb = data['pointobb']

            for idx in range(5):
                if idx == 4:
                    idx = 0
                ET.SubElement(
                    points, "point"
                ).text = f"{pointobb[2 * idx]},{pointobb[2 * idx + 1]}"

        tree = ET.ElementTree(root)
        tree.write(f"{self.output_dir}/{basename}.xml",
                   pretty_print=True,
                   xml_declaration=True,
                   encoding='utf-8')
Exemplo n.º 7
0
    def __call__(self, objects, image_fn):
        basename = aitool.get_basename(image_fn)
        with open(f"{self.output_dir}/{basename}.txt", 'w') as f:
            for data in objects:
                if self.classes is not None:
                    object_info = [self.classes[data['category_id'] - 1]]
                else:
                    object_info = [str(data['category_id'])]

                bbox = data['bbox']
                xmin, ymin, xmax, ymax = aitool.xywh2xyxy(bbox)
                object_info.extend(
                    [str(xmin), str(ymin),
                     str(xmax), str(ymax)])

                f.write(" ".join(object_info))
Exemplo n.º 8
0
 def _parse_expand_image_list(self, expand_image_list):
     if isinstance(expand_image_list, list):
         return expand_image_list
     elif isinstance(expand_image_list, str):
         return_list = []
         with open(expand_image_list, 'r') as f:
             lines = f.readlines()
         for line in lines:
             return_list.append(aitool.get_basename(line.strip()))
         return return_list
     elif expand_image_list is None:
         return expand_image_list
     else:
         raise NotImplementedError(
             f"don't support the type of expand_image_list: {type(expand_image_list)}"
         )
Exemplo n.º 9
0
    def __call__(self, img, objects, ori_image_fn):
        image_basename = aitool.get_basename(ori_image_fn)
        for data in objects:
            bbox = [int(_) for _ in data['bbox']]
            bbox = self._fix_bbox_bound(img, bbox)
            pointobb = data['pointobb']
            x, y, w, h = bbox

            if self._filter_invalid_bbox(bbox):
                continue

            img_save = img[y:y + h, x:x + w, :]
            output_fn = [image_basename]
            output_fn += [str(int(coord)) for coord in pointobb]
            output_file = os.path.join(
                self.output_dir, "_".join(output_fn) + self.output_format)
            cv2.imwrite(output_file, img_save)
Exemplo n.º 10
0
    def __init__(self,
                 pkl_file,
                 ann_file,
                 keep_boundary=True,
                 score_threshold=0.05,
                 min_area=10):
        self.keep_boundary = keep_boundary
        self.score_threshold = score_threshold
        self.min_area = min_area

        if isinstance(pkl_file, str):
            results = mmcv.load(pkl_file)
        elif isinstance(pkl_file, (list, tuple)):
            results = pkl_file
        else:
            raise TypeError(
                f'do not support the pkl file type: {type(pkl_file)}')

        coco = COCO(ann_file)
        self.img_ids = coco.get_img_ids()
        self.cat_ids = coco.get_cat_ids()
        self.img_fns = []
        self.img_sizes = []

        print("begin to convert pkl file to specific format")
        self.objects = dict()
        self.objects_with_id = dict()
        for idx, img_id in tqdm.tqdm(enumerate(self.img_ids)):
            info = coco.load_imgs([img_id])[0]
            img_name = aitool.get_basename(info['file_name'])
            img_size = (info['height'], info['width'])
            self.img_fns.append(img_name)
            result = results[idx]

            self.objects[img_name] = self._convert_items(result,
                                                         img_size=img_size)
            self.objects_with_id[img_id] = self.objects[img_name].copy()
Exemplo n.º 11
0
import aitool

if __name__ == "__main__":
    pkl_file = '../mmdetv2-bc/results/plane/pl_v001_mask_rcnn_x101_32x4d_fpn_2x/pl_v001_mask_rcnn_x101_32x4d_fpn_2x_coco_results.pkl'
    ann_file = './data/plane/v1/coco/annotations/plane_val.json'
    img_dir = './data/plane/v1/val/images'

    pkl_parser = aitool.PklParserMask(pkl_file, ann_file)

    image_list = aitool.get_file_list(img_dir, '.tif')

    for image_file in image_list:
        basename = aitool.get_basename(image_file)
        objects = pkl_parser(basename)

        print("number of objects: ", len(objects))