def _apply_adagrad_compute(var, accum, lr, grad, update_slots): """Compute apply_adagrad""" input_dtype = var.dtype if input_dtype == "float16": var = akg.lang.ascend.cast_to(var, "float32") accum = akg.lang.ascend.cast_to(accum, "float32") lr = akg.lang.ascend.cast_to(lr, "float32") grad = akg.lang.ascend.cast_to(grad, "float32") if update_slots is True: # accum += grad ** 2 grad_square = akg.lang.ascend.vmul(grad, grad) accum = akg.lang.ascend.vadd(accum, grad_square) elif input_dtype == 'float32': accum = akg.lang.ascend.vadds(accum, akg.tvm.const(0, "float32")) # var -= lr * grad / accum.sqrt() lr_grad = akg.tvm.compute(grad.shape, lambda *indices: grad(*indices) * lr[0], tag='elewise_single_VS_mul') rsqrt_accum = rsqrt(accum, target=utils.CCE) update = akg.lang.ascend.vmul(lr_grad, rsqrt_accum) out_var = akg.lang.ascend.vsub(var, update) if input_dtype == "float16": out_var = akg.lang.ascend.cast_to(out_var, "float16") accum = akg.lang.ascend.cast_to(accum, "float16") return out_var, accum
def _apply_proximal_adagrad_compute(var, accum, lr, l1, l2, grad): """compute the FOBOS algorithm with adagrad learning rate""" dtype = var.dtype if dtype == "float16": # cast to float32 for higher accuracy compute_type = "float32" var, accum, lr, l1, l2, grad = [ akg.topi.cast(t, compute_type) for t in [var, accum, lr, l1, l2, grad] ] shape = var.shape accum_new = akg.tvm.compute( shape, lambda *indice: accum(*indice) + grad(*indice) * grad(*indice), name="accum_new") accum_new_rsqrt = rsqrt(accum_new, target="cce") ada_lr = akg.topi.multiply(lr, accum_new_rsqrt) var_new = apply_proximal_gradient_descent_impl(var, ada_lr, l1, l2, grad) # cast to origin dtype var_new, accum_new = [ akg.topi.cast(t, dtype) if t.dtype != dtype else t for t in [var_new, accum_new] ] return var_new, accum_new
def l2normalize(data, target=utils.CCE): utils.ops_dtype_check(data.dtype, utils.DtypeForDavinci.ALL_FLOAT) utils.check_shape(data.shape) square_res = akg.lang.ascend.vmul(data, data) reduce_sum = sum(square_res, -1, keepdims=True, target=target) one_of_square = rsqrt(reduce_sum, target=target) broad_cast = akg.lang.ascend.broadcast(one_of_square, data.shape) res = akg.lang.ascend.vmul(data, broad_cast) attrs = {"pragma_modshift": 1} return res, attrs
def _apply_rms_prop_compute(var, ms, mom, grad, lr, momentum, rho, epsilon): """Compute apply_rms_prop""" compute_dtype = "float32" dtype = var.dtype if dtype != compute_dtype: var, ms, mom, grad, lr, momentum, rho = [ topi.cast(t, compute_dtype) for t in [var, ms, mom, grad, lr, momentum, rho] ] shape = get_shape(var) cons_eps = akg.tvm.const(epsilon, dtype=compute_dtype) one_minus_rho = akg.tvm.compute( (1, ), lambda *indice: akg.tvm.const(1.0, compute_dtype) - rho[0], name="one_minus_rho") # var_update = var - (momentum * mom + lr * grad / sqrt(rho * ms + (1 - rho) * grad * grad + epsilon)) mom_1 = akg.tvm.compute(shape, lambda *indice: momentum[0] * mom(*indice), name="mom_1") lr_grad = akg.tvm.compute(shape, lambda *indice: grad(*indice) * lr[0], name="lr_grad") rho_ms = akg.tvm.compute(shape, lambda *indice: ms(*indice) * rho[0], name="rho_ms") rho_grad2 = akg.tvm.compute( shape, lambda *indice: grad(*indice) * grad(*indice) * one_minus_rho[0], name="rho_grad2") ms_update = akg.tvm.compute( shape, lambda *indice: rho_ms(*indice) + rho_grad2(*indice), name="ms_update") ms_eps = akg.tvm.compute(shape, lambda *indice: ms_update(*indice) + cons_eps, name="ms_eps") rsq = rsqrt(ms_eps, target="cce") mom_2 = akg.tvm.compute(shape, lambda *indice: lr_grad(*indice) * rsq(*indice), name="mom_2") mom_update = akg.tvm.compute( shape, lambda *indice: mom_1(*indice) + mom_2(*indice), name="mom_update") var_update = akg.tvm.compute( shape, lambda *indice: var(*indice) - mom_update(*indice), name="var_update") if var_update.dtype != dtype: var_update, ms_update, mom_update = [ topi.cast(t, dtype) for t in [var_update, ms_update, mom_update] ] return var_update, ms_update, mom_update
def _apply_adadelta_compute(var, accum, accum_update, grad, lr, rho, epsilon): """Compute apply_adadelta""" dtype = var.dtype if dtype == "float16": var = topi.cast(var, "float32") accum = topi.cast(accum, "float32") accum_update = topi.cast(accum_update, "float32") lr = topi.cast(lr, "float32") rho = topi.cast(rho, "float32") grad = topi.cast(grad, "float32") epsilon = tvm.const(epsilon, "float32") tensor_one = akg.lang.ascend.broadcast(tvm.const(1, "float32"), var.shape) tensor_rho = topi.broadcast_to(rho, var.shape) tensor_rho_gs = topi.subtract(tensor_one, tensor_rho) tensor_epsilon = akg.lang.ascend.broadcast(epsilon, var.shape) # accum = accum * rho + grad ** 2 * (1 - rho) rhs = topi.multiply(accum, tensor_rho) lhs = topi.multiply(grad, grad) lhs = topi.multiply(lhs, tensor_rho_gs) accum_res = akg.lang.ascend.vadd(lhs, rhs) # update = (accum_update + epsilon).sqrt * (accum + epsilon).rsqrt * grad rhs = topi.add(accum_update, tensor_epsilon) rhs = sqrt(rhs, target=utils.CCE) lhs = topi.add(accum_res, tensor_epsilon) lhs = rsqrt(lhs, target=utils.CCE) lhs = topi.multiply(grad, lhs) update = topi.multiply(lhs, rhs) # var -= update * lr var_res = topi.broadcast_to(lr, var.shape) var_res = topi.multiply(update, var_res) var_res = topi.subtract(var, var_res) # accum_update = rho * accum_update + (1 - rho) * update.square rhs = topi.multiply(accum_update, tensor_rho) lhs = topi.multiply(update, update) lhs = topi.multiply(lhs, tensor_rho_gs) accum_update_res = akg.lang.ascend.vadd(lhs, rhs) if dtype == "float16": var_res = topi.cast(var_res, "float16") accum_res = topi.cast(accum_res, "float16") accum_update_res = topi.cast(accum_update_res, "float16") return var_res, accum_res, accum_update_res
def _bessel_i0e_compute(input_data): """bessel i0e compute""" shape_input = input_data.shape dtype_input = input_data.dtype # chose the type of data in begin if dtype_input == "float16": input_data = Cast(input_data, "float32", target=utils.CCE) abs_data = Abs(input_data, target=utils.CCE) # compute bessel_i0e for data in (-3.75, 3.75) # t = |x| / 3.75 # I0e = e^-|x|(1 + 3.5156229t^2 + 3.0899424t^4 + 1.2067492t^6 + 0.2659732t^8 # + 0.0360768t^10 + 0.0045813t^12)), |x| <= 3.75 broad_const_limit = akg.lang.ascend.broadcast( akg.tvm.const(CONST_LIMIT, "float32"), shape_input) before_abs_data = minimum(abs_data, broad_const_limit) data = topi.multiply(before_abs_data, 1.0 / CONST_LIMIT) square_data = mul(data, data, target=utils.CCE) before_res = topi.multiply(square_data, ITR_BEFORE[LEN_BEFORE - 1]) before_res = topi.add(before_res, ITR_BEFORE[LEN_BEFORE - 2]) for iter_number in ITR_BEFORE[LEN_BEFORE - 3::-1]: before_res = mul(before_res, square_data, target=utils.CCE) before_res = topi.add(before_res, iter_number) exp_data = Exp(neg(before_abs_data, target=utils.CCE), target=utils.CCE) before_res = mul(before_res, exp_data, target=utils.CCE) # compute bessel_i0e for data in other domain # t = |x| / 3.75 # I0e(x) = (1 / sqrt(|x|))*(0.39894228 + 0.01328592t^-1 + 0.00225319t^-2 + -0.00157565t^-3 # + 0.00916281t^-4 + -0.02057706t^-5 + 0.02635537t^-6 + -0.01647633t^-7 # + 0.00392377t^-8), |x| >= 3.75 data = Divide(broad_const_limit, abs_data, target=utils.CCE) after_res = topi.multiply(data, ITR_AFTER[LEN_AFTER - 1]) after_res = topi.add(after_res, ITR_AFTER[LEN_AFTER - 2]) for iter_number in ITR_AFTER[LEN_AFTER - 3::-1]: after_res = mul(after_res, data, target=utils.CCE) after_res = topi.add(after_res, iter_number) rsqrt_data = rsqrt(abs_data, target=utils.CCE) after_res = mul(after_res, rsqrt_data, target=utils.CCE) after_res = minimum(before_res, after_res, target=utils.CCE) # chose the type of data in end if dtype_input == "float16": after_res = Cast(after_res, "float16", target=utils.CCE) return after_res
def _after_res_compute(abs_data): """ compute bessel_i1e for abs value of data greater than or equal to 3.75 Algrithm: t = 3.75 / x I1(x) = (1 / sqrt(x))*(0.39894228 - 0.03988024t - 0.00362018t^2 + 0.00163801t^3 - 0.01031555t^4 + 0.02282967t^5 - 0.02895312t^6 + 0.01787654t^7 - 0.00420059t^8) """ broad_const_limit = akg.lang.ascend.broadcast( akg.tvm.const(CONST_LIMIT, abs_data.dtype), abs_data.shape) data = Divide(broad_const_limit, abs_data, target=utils.CCE) after_res = topi.multiply(data, ITR_AFTER[LEN_AFTER - 1]) after_res = topi.add(after_res, ITR_AFTER[LEN_AFTER - 2]) for iter_number in ITR_AFTER[LEN_AFTER - 3::-1]: after_res = mul(after_res, data, target=utils.CCE) after_res = topi.add(after_res, iter_number) abs_data_rsqrt = rsqrt(abs_data, target=utils.CCE) after_res = mul(after_res, abs_data_rsqrt, target=utils.CCE) return after_res
def _apply_centered_rms_prop_compute(var, mg, ms, mom, grad, lr, momentum, rho, epsilon): """Compute apply_centered_rms_prop""" inp_dtype = var.dtype if inp_dtype == "float16": var = akg.lang.ascend.cast_to(var, "float32") mg = akg.lang.ascend.cast_to(mg, "float32") ms = akg.lang.ascend.cast_to(ms, "float32") mom = akg.lang.ascend.cast_to(mom, "float32") lr = akg.lang.ascend.cast_to(lr, "float32") rho = akg.lang.ascend.cast_to(rho, "float32") momentum = akg.lang.ascend.cast_to(momentum, "float32") grad = akg.lang.ascend.cast_to(grad, "float32") epsilon = akg.tvm.const(epsilon, var.dtype) tensor_one_rho = akg.tvm.compute(rho.shape, lambda *indices: rho(*indices) * akg.tvm.const(-1, rho.dtype), tag='elewise_single_VS_mul') tensor_one_rho = akg.tvm.compute( tensor_one_rho.shape, lambda *indices: tensor_one_rho(*indices) + akg.tvm.const(1, rho.dtype), tag='elewise_single_VS_add') # out_mg <- rho * mg + (1-rho) * grad mg_rho = akg.tvm.compute(mg.shape, lambda *indices: mg(*indices) * rho[0], tag='elewise_single_VS_mul') rhs = akg.tvm.compute(grad.shape, lambda *indices: grad(*indices) * tensor_one_rho[0], tag='elewise_single_VS_mul') out_mg = akg.lang.ascend.vadd(mg_rho, rhs) # out_ms <- rho * ms + (1-rho) * grad * grad ms_rho = akg.tvm.compute(ms.shape, lambda *indices: ms(*indices) * rho[0], tag='elewise_single_VS_mul') rhs = akg.lang.ascend.vmul(grad, grad) rhs = akg.tvm.compute(rhs.shape, lambda *indices: rhs(*indices) * tensor_one_rho[0], tag='elewise_single_VS_mul') out_ms = akg.lang.ascend.vadd(ms_rho, rhs) # out_mom <- momentum * mom + lr * grad / sqrt(out_ms - out_mg * out_mg + epsilon) lhs_mom = akg.tvm.compute(mom.shape, lambda *indices: mom(*indices) * momentum[0], tag='elewise_single_VS_mul') lr_grad = akg.tvm.compute(grad.shape, lambda *indices: grad(*indices) * lr[0], tag='elewise_single_VS_mul') rhs = akg.lang.ascend.vmul(out_mg, out_mg) rhs = akg.lang.ascend.vsub(out_ms, rhs) rhs_eps = akg.tvm.compute(rhs.shape, lambda *indices: rhs(*indices) + epsilon, tag='elewise_single_VS_add') rhs_eps = rsqrt(rhs_eps, target=utils.CCE) rhs_eps = akg.lang.ascend.vmul(lr_grad, rhs_eps) out_mom = akg.lang.ascend.vadd(lhs_mom, rhs_eps) # out_var <- var - out_mom out_var = akg.lang.ascend.vsub(var, out_mom) if inp_dtype == "float16": out_var = akg.lang.ascend.cast_to(out_var, "float16") out_mg = akg.lang.ascend.cast_to(out_mg, "float16") out_ms = akg.lang.ascend.cast_to(out_ms, "float16") out_mom = akg.lang.ascend.cast_to(out_mom, "float16") return out_var, out_mg, out_ms, out_mom
def rsqrt_ad(head, a, target="cce"): b = rsqrt(a, target='cce') _jacs = list(akg.differentiate(b, [a], head)) return _jacs[0]