Exemplo n.º 1
0
def fused_relu_grad_bn_double_update_grad(data_1,
                                          data_2,
                                          data_3,
                                          data_4,
                                          data_5,
                                          data_6,
                                          data_7,
                                          layout='NHWC',
                                          target=utils.CUDA):
    transform_list = [data_2, data_4, data_5, data_6, data_7]
    for i in transform_list:
        if layout == "NCHW":
            i = topi.transpose(i, axes=(0, 2, 3, 1))
        elif layout != "NHWC":
            raise NotImplementedError(
                'Layout not supported {} '.format(layout))

    data_tmp1 = topi.full_like(data_7, 0.0)
    data_tmp2 = topi.greater(data_7, data_tmp1)
    data_tmp3 = topi.add(data_5, data_6)
    data_tmp4 = topi.where(data_tmp2, data_tmp3, data_tmp1)
    data_tmp5 = topi.cast(data_tmp4, 'float32')
    data_tmp7 = topi.sum(data_tmp5, axis=(0, 1, 2))

    n, h, w, c = data_7.shape
    data_tmp8 = topi.cast(data_2, 'float32')
    data_tmp9 = topi.full_like(data_tmp7, 1.0 / (n * h * w))
    data_tmp10 = topi.multiply(data_1, data_tmp9)
    data_tmp11 = topi.broadcast_to(data_tmp10, data_tmp8.shape)
    data_tmp12 = topi.subtract(data_tmp8, data_tmp11)
    data_tmp13 = topi.multiply(data_tmp5, data_tmp12)
    data_tmp15 = topi.sum(data_tmp13, axis=(0, 1, 2))

    data_tmp16 = topi.cast(data_4, 'float32')
    data_tmp17 = topi.multiply(data_3, data_tmp9)
    data_tmp18 = topi.broadcast_to(data_tmp17, data_tmp16.shape)
    data_tmp19 = topi.subtract(data_tmp16, data_tmp18)
    data_tmp20 = topi.multiply(data_tmp5, data_tmp19)
    data_tmp22 = topi.sum(data_tmp20, axis=(0, 1, 2))

    return [data_tmp7, data_tmp15, data_tmp22]
Exemplo n.º 2
0
def _before_res_compute(abs_data):
    """
    compute bessel_i1e for abs value of data less than or equal to 3.75

    Algrithm:
    t = x / 3.75
    I1(x) = e^-|x|*x*(0.5 + 0.87890594t^2 + 0.51498869t^4 + 0.15084934t^6
                    + 0.02658773t^8 + 0.00301532t^10 + 0.00032411t^12)
    """

    data = topi.multiply(abs_data, 1.0 / CONST_LIMIT)
    data_square = mul(data, data)
    before_res = topi.multiply(data_square, ITR_BEFORE[LEN_BEFORE - 1])
    before_res = topi.add(before_res, ITR_BEFORE[LEN_BEFORE - 2])
    for iter_number in ITR_BEFORE[LEN_BEFORE - 3::-1]:
        before_res = mul(before_res, data_square)
        before_res = topi.add(before_res, iter_number)
    exp_value = exp(neg(abs_data))
    before_res = mul(before_res, exp_value)
    before_res = mul(before_res, abs_data)
    return before_res
Exemplo n.º 3
0
def _compute_process(var, m, grad, lr, logbase, sign_decay, beta):
    """Compute process of power_sign."""
    # m_t = beta * m + (1 - beta) * grad
    m_t = _compute_m_t(m, beta, grad)

    # update = exp(logbase * sign_decay * sign(m_t) * sign(grad)) * grad
    sign_gm = topi.multiply(sign(m_t), sign(grad))
    update = _compute_update(logbase, sign_decay, sign_gm, grad)
    # var_t = var - lr_t * update
    var_t = _compute_var(var, lr, update)

    return var_t, m_t
Exemplo n.º 4
0
def fused_bn_reduce_grad(data0, data1, data2, data3, data4, data5, data6, data7, layout='NHWC', out_dtype='float16'):
    
    if layout == 'NCHW':
        data3 = topi.transpose(data3, (0, 2, 3, 1))
        data7 = topi.transpose(data7, (0, 2, 3, 1))
    elif layout != 'NHWC':
        raise NotImplementedError(
            'Layout not supported {} '.format(layout))

    n, h, w, c = data3.shape
    const = n * h * w
    inter_dtype = 'float32'
    out1 = topi.multiply(data4, data5)
    out1 = topi.divide(out1, const)
    out1 = topi.expand_dims(out1, axis=0, num_newaxis=3)
    out1 = topi.broadcast_to(out1, (n, h, w, c))

    data3 = topi.cast(data3, inter_dtype)
    data2 = topi.expand_dims(data2, axis=0, num_newaxis=3)
    data2 = topi.broadcast_to(data2, (n, h, w, c))
    out2 = topi.multiply(data3, const)
    out2 = topi.subtract(out2, data2)

    data1 = topi.expand_dims(data1, axis=0, num_newaxis=3)
    data1 = topi.broadcast_to(data1, (n, h, w, c))
    data7 = topi.cast(data7, inter_dtype)
    out3 = topi.divide(data6, const)
    out3 = topi.subtract(data7, out3)
    out3 = topi.multiply(data1, out3)
    out3 = topi.divide(out3, data0)

    output = topi.subtract(out2, out3)
    output = topi.multiply(output, out1)

    output = topi.cast(output, out_dtype)

    if layout == "NCHW":
        output = topi.transpose(output, (0, 3, 1, 2))

    return output
Exemplo n.º 5
0
def fused_relu_grad_bn_double_reduce_grad(data0, data1, data2, data3, data4, data5, data6, data7, data8,
                           data9, data10, data11, data12, data13, data14, data15, layout="NHWC",
                           out_dtype="float16", target=utils.CUDA):
    
    if layout == 'NCHW':
        data5 = topi.transpose(data5, (0, 2, 3, 1))
        data9 = topi.transpose(data9, (0, 2, 3, 1))
        data13 = topi.transpose(data13, (0, 2, 3, 1))
        data14 = topi.transpose(data14, (0, 2, 3, 1))
        data15 = topi.transpose(data15, (0, 2, 3, 1))
    elif layout != 'NHWC':
        raise NotImplementedError(
            'Layout not supported {} '.format(layout))
    
    inter_dtype = "float32"
    n, h, w, c = data5.shape
    scale = n * h * w

    mul = topi.multiply(data2, data3)
    mul1221 = topi.divide(mul, scale)

    # ReluGrad
    zero = tvm.const(0, data15.dtype)
    add = topi.add(data13, data14)
    addgrad = tvm.compute(add.shape, lambda *i: tvm.if_then_else(data15(*i) >= zero, add(*i), zero), tag=tag.INJECTIVE)
    addgrad = topi.cast(addgrad, inter_dtype)
    mul3283 = topi.multiply(scale, addgrad)
    sub1159 = topi.subtract(mul3283, data6)

    data5_cast = topi.cast(data5, inter_dtype)
    mul2372 = topi.divide(data4, scale)
    sub631 = topi.subtract(data5_cast, mul2372)
    mul1220 = topi.multiply(sub631, data1)
    div = topi.divide(mul1220, data0)
    sub271 = topi.subtract(sub1159, div)
    mul1218 = topi.multiply(mul1221, sub271)
    mul1218_cast = topi.cast(mul1218, out_dtype)

    mul1231 = topi.multiply(data11, data12)
    mul1230 = topi.divide(mul1231, scale)
    data9_cast = topi.cast(data9, inter_dtype)
    mul2364 = topi.divide(data8, scale)
    sub625 = topi.subtract(data9_cast, mul2364)
    mul1229 = topi.multiply(data10, sub625)

    div272 = topi.divide(mul1229, data7)
    sub272 = topi.subtract(sub1159, div272)
    mul1228 = topi.multiply(mul1230, sub272)
    mul1228_cast = topi.cast(mul1228, out_dtype)

    if layout == "NCHW":
        mul1218_cast = topi.transpose(mul1218_cast, (0, 3, 1, 2))
        mul1228_cast = topi.transpose(mul1228_cast, (0, 3, 1, 2))
    
    return [mul1218_cast, mul1228_cast]
Exemplo n.º 6
0
def fused_bn_update(input1, input2, input3, input4, dtype, c1, c2, c3, c4):
    """
    fused operator.

    Args:
        input1 ~ input4: tvm.tensor.Tensor.
        dtype: dtype of Tensor.
        c1 ~ c4: const.

    Returns:
        Three output (list of tvm.tensor.Tensor).
    """
    const1 = tvm.const(c1, dtype)
    mul0 = topi.multiply(input2, const1)
    mul1 = topi.multiply(input1, const1)
    mul2 = topi.multiply(mul1, mul1)
    sigma2 = topi.subtract(mul0, mul2)
    const2 = tvm.const(c2, dtype)
    rsqrt_val = topi.rsqrt(topi.add(sigma2, const2))

    const3 = tvm.const(c3, dtype)
    mul3 = topi.multiply(sigma2, const3)
    sub1 = topi.subtract(input3, mul3)
    const4 = tvm.const(c4, dtype)
    data1 = topi.multiply(const4, sub1)

    sub2 = topi.subtract(input4, mul1)
    data2 = topi.multiply(const4, sub2)

    return (rsqrt_val, data1, data2)
Exemplo n.º 7
0
def my_dsl(dtype, kernel_name, attrs):
    m = tvm.var("M")
    n = tvm.var("N")
    A = tvm.placeholder((m, ), name="A", dtype=dtype)
    B = tvm.placeholder((m, ), name="B", dtype=dtype)

    if insn == "add":
        C = topi.add(A, B)
    elif insn == "sub":
        C = topi.subtract(A, B)
    if insn == "mul":
        C = topi.multiply(A, B)
    elif insn == "div":
        C = topi.divide(A, B)
    elif insn == "max":
        C = topi.maximum(A, B)
    elif insn == "min":
        C = topi.minimum(A, B)

    elif insn == "abs":
        C = tvm.compute(A.shape, lambda *index: tvm.abs(A(*index)), name='C')
    elif insn == "exp":
        C = topi.exp(A)
    elif insn == "log":
        C = topi.log(A)
    elif insn == "sqrt":
        C = topi.sqrt(A)
        C = topi.log(A)
    elif insn == "sqrt":
        C = topi.sqrt(A)

    elif insn == "adds":
        C = A + tvm.const(2, dtype)
    elif insn == "muls":
        C = A * tvm.const(2, dtype)

    # C = tvm.compute((m, ), lambda i: A[i] + B[i], name="C")
    s = tvm.create_schedule([C.op])
    with akg.build_config(add_lower_pass=cce.debug_mode(0), dump_pass_ir=True):
        if insnType == "binary":
            mod = akg.build(s, [A, B, C],
                            "cce",
                            name=kernel_name,
                            attrs=attrs,
                            polyhedral=True)
        else:
            mod = akg.build(s, [A, C],
                            "cce",
                            name=kernel_name,
                            attrs=attrs,
                            polyhedral=True)
    return mod
Exemplo n.º 8
0
def _apply_ada_max_compute(var, m, v, grad, lr, beta1, beta1_power, beta2,
                           epsilon):
    """Compute ada_max."""
    # cast to float32 for improved accuracy
    inp_dtype = var.dtype
    if inp_dtype == 'float16':
        var = topi.cast(var, 'float32')
        m = topi.cast(m, 'float32')
        v = topi.cast(v, 'float32')
        lr = topi.cast(lr, 'float32')
        beta1_power = topi.cast(beta1_power, 'float32')
        beta1 = topi.cast(beta1, 'float32')
        beta2 = topi.cast(beta2, 'float32')
        grad = topi.cast(grad, 'float32')
    epsilon = tvm.const(epsilon, 'float32')

    # m += (grad - m) * (1 - beta1)
    rhs = tvm.compute(beta1.shape,
                      lambda *i: beta1(*i) * neg_one_const("float32"))
    rhs = tvm.compute(rhs.shape, lambda *i: rhs(*i) + one_const("float32"))
    lhs = topi.subtract(grad, m)
    rhs = tvm.compute(lhs.shape, lambda *i: lhs(*i) * rhs[0])
    m = topi.add(m, rhs)

    # v = max(beta2*v, abs(grad))
    lhs = tvm.compute(v.shape, lambda *i: v(*i) * beta2[0])
    rhs = topi.abs(grad)
    v = topi.maximum(lhs, rhs)

    # var -= lr / (1 - beta1_power) * (m / (v + epsilon))
    # lr * m / (1 - beta1_power) * (v + epsilon)
    # v + epsilon
    rhs = tvm.compute(v.shape, lambda *i: v(*i) + epsilon)
    # 1 - beta1_power
    lhs = tvm.compute(beta1_power.shape,
                      lambda *i: beta1_power(*i) * neg_one_const("float32"))
    lhs = tvm.compute(lhs.shape, lambda *i: lhs(*i) + one_const("float32"))
    # (1 - beta1_power) * (v + epsilon)
    rhs = tvm.compute(rhs.shape, lambda *i: rhs(*i) * lhs[0])
    # lr * m
    lhs = tvm.compute(m.shape, lambda *i: m(*i) * lr[0])
    # lr * m / (1 - beta1_power) * (v + epsilon)
    rhs = reciprocal(rhs)
    rhs = topi.multiply(lhs, rhs)
    var = topi.subtract(var, rhs)

    if inp_dtype == 'float16':
        var = topi.cast(var, inp_dtype)
        m = topi.cast(m, inp_dtype)
        v = topi.cast(v, inp_dtype)

    return var, m, v
Exemplo n.º 9
0
def _atan2_compute(y, x):
    """compute for atan2"""
    const_pi_by_two = 1.5707963267948966192313216916398
    dtype = y.dtype
    if dtype == "float16":
        y = topi.cast(y, "float32")
        x = topi.cast(x, "float32")

    x_lt_zero_y_mask, y_ge_zero_mask = _init_atan2_mask(y, x)
    y_cmp_zero = topi.multiply(y_ge_zero_mask,
                               tvm.const(const_pi_by_two, "float32"))
    res_x_lt_zero = topi.multiply(x_lt_zero_y_mask, dc.pi_const("float32"))

    # caculate the atan(y/x) when x > 0
    if product_is_mini():
        x_rec = reciprocal(x, target=utils.CCE)
        res = topi.multiply(y, x_rec)
    else:
        res = topi.divide(y, x)
    res, _ = atan(res)

    if product_is_mini():
        tensor_zero = dc.zero_const("float16")
        x = topi.cast(x, "float16")
        y_cmp_zero = topi.cast(y_cmp_zero, "float16")
        res = topi.cast(res, "float16")
    else:
        tensor_zero = dc.zero_const("float32")

    res = tvm.compute(res.shape,
                      lambda *i: tvm.expr.Select(
                          x(*i) == tensor_zero, y_cmp_zero(*i), res(*i)),
                      name="res")

    if product_is_mini():
        res = topi.cast(res, "float32")

    res = topi.add(res, res_x_lt_zero)
    return topi.cast(res, dtype)
Exemplo n.º 10
0
def pow_compute(input_x, input_y, data):
    """
    :param input_x:
    :param input_y:
    :return: exp(input_y * ln(input_x))
    """

    input_x_broadcast = akg.lang.ascend.broadcast(input_x, data.shape)
    log_value = log(input_x_broadcast, utils.CCE)
    mul_value = topi.multiply(input_y, log_value)
    res = Exp(mul_value, utils.CCE)

    return res
Exemplo n.º 11
0
def _cmpare_value(input_data, nudged_min, nudged_max):
    """
    where((input_data<=nudged_max)&(x>=nudged_min),1,0)

    Args:  
        input_data (tvm.tensor.Tensor): Input data
        nudged_min (tvm.tensor.Tensor): Minimum value of comparison
        nudged_max (tvm.tensor.Tensor): Maximum value of comparison

    Returns:
        tvm.tensor.Tensor
    """
    min_value = tvm.const(2**(-126), dtype="float32")
    # (2**(-126))*(2**(62))*(2**(62))*(2**(2)) = 1
    # so min_value*max_value*max_value*max_value_one = 1
    max_value = tvm.const(2**(62), dtype="float32")
    max_value_one = tvm.const(2**(2), dtype="float32")
    data_zero = topi.multiply(input_data, 0)
    max_value_tensor = topi.add(data_zero, max_value)
    min_value_tensor = topi.add(data_zero, min_value)
    max_value_one_tensor = topi.add(data_zero, max_value_one)

    sub_tmp = topi.subtract(input_data, nudged_min)
    sub_min = topi.add(sub_tmp, min_value)
    vmax_tmp = topi.maximum(sub_min, data_zero)

    sub_tmp_max = topi.subtract(nudged_max, input_data)
    sub_max = topi.add(sub_tmp_max, min_value)
    vmin_tmp = topi.maximum(sub_max, data_zero)

    one_tmp = topi.multiply(vmax_tmp, vmin_tmp)
    one_min = topi.minimum(one_tmp, min_value_tensor)

    vmul_max_value = topi.multiply(one_min, max_value_tensor)
    vmul_max_value_one = topi.multiply(vmul_max_value, max_value_tensor)
    between_nudged_min_max = topi.multiply(vmul_max_value_one,
                                           max_value_one_tensor)

    return between_nudged_min_max
def fake_quant_with_min_max_vars_per_channel_compute(input_data,
                                                     input_min,
                                                     input_max,
                                                     num_bits=8,
                                                     narrow_range=False):
    """fake_quant_with_min_max_vars_per_channel compute implemention"""
    shape = get_shape(input_data.shape)
    dtype = input_data.dtype
    min_broadcast = akg.lang.cce.broadcast(input_min, shape, dtype)
    max_broadcast = akg.lang.cce.broadcast(input_max, shape, dtype)
    # get nudged_min and nudged_max by nudged_min_max_compute function
    nudged_min_nudged_max = nudged_min_max_compute(min_broadcast,
                                                   max_broadcast, num_bits,
                                                   narrow_range)
    # transform the input between nudged_max and nudged_min
    clamped_tmp = topi.minimum(input_data, nudged_min_nudged_max[1])
    clamped = topi.maximum(clamped_tmp, nudged_min_nudged_max[0])

    # calculate the quantized and dequantized results
    clamped_shifted = topi.subtract(clamped, nudged_min_nudged_max[0])
    if utils.product_is_mini():
        clamped_shifted_div_scale = mul(clamped_shifted,
                                        reciprocal(nudged_min_nudged_max[2]))
    else:
        clamped_shifted_div_scale = div(clamped_shifted,
                                        nudged_min_nudged_max[2])
    result_tmp = topi.add(clamped_shifted_div_scale, dc.half_const(dtype))
    floor_result_tmp = akg.lang.cce.floor(result_tmp)
    if utils.product_is_mini():
        floor_result_tmp = topi.cast(floor_result_tmp, "float16")

    floor_result_tmp = topi.cast(floor_result_tmp, "float32")
    scale_product = topi.multiply(floor_result_tmp, nudged_min_nudged_max[2])
    tmp_res = topi.add(scale_product, nudged_min_nudged_max[0])
    # get bool_both_zero_value by bool_both_zero_compute function
    bool_both_zero_value = bool_both_zero_compute(min_broadcast, max_broadcast)
    res = topi.multiply(tmp_res, bool_both_zero_value)

    return res
Exemplo n.º 13
0
def tan_compute(input_x):
    """tan compute implemention"""
    dtype = input_x.dtype

    # cast to type float32 when type is float16 in cloud and mini, or int32 in cloud
    if dtype == FLOAT_16 or dtype == FLOAT_32 or (dtype == INT_32 and not utils.product_is_mini()):
        input_x = topi.cast(input_x, FLOAT_32)
        # adjust x to [-pi/2,pi/2] using x = x-round(x/pi)*pi
        round_pi_div = akg.lang.cce.round(topi.multiply(input_x, tvm.const(1.0/PI, FLOAT_32)))
        round_pi_div = akg.lang.cce.cast_to(round_pi_div, FLOAT_32)
        input_x = topi.subtract(input_x, topi.multiply(round_pi_div, tvm.const(PI, FLOAT_32)))
    # cast to type float16 when type is int32 in mini
    elif dtype == INT_32 and utils.product_is_mini():
        input_x = topi.cast(input_x, FLOAT_16)
        # adjust x to [-pi/2,pi/2] using x = x-round(x/pi)*pi
        round_pi_div = akg.lang.cce.round(topi.multiply(input_x, tvm.const(1.0/PI, FLOAT_16)))
        round_pi_div = akg.lang.cce.cast_to(round_pi_div, FLOAT_16)
        input_x = topi.subtract(input_x, topi.multiply(round_pi_div, tvm.const(PI, FLOAT_16)))

    res = _tan_2x_multi(input_x, TAN_2X_TIMES)
    # cast the dtype to original dtype
    res = topi.cast(res, dtype)
    return res
Exemplo n.º 14
0
def fake_quant_with_min_max_args_gradient(input_gradients,
                                          input_data,
                                          min=-6,
                                          max=6,
                                          num_bits=8,
                                          narrow_range=False):
    """
    Computes gradients of Fake-quantize on the 'input_data' tensor,

    output_backprops = input_gradients*(if input_data>=nudged_min and <=nudged_max 1 else 0)

    Args:
        input_gradients (tvm.tensor.Tensor): input gradients from previously operation
        input_data (tvm.tensor.Tensor): input of fake-quantize, only supports "float32"
        min ([float, int]): scalar, defaults to -6
        max ([float, int]): scalar, defaults to 6. [min; max] define the 
                            clamping range for the input_data data
        num_bits ([float, int]): Defaults to 8. num_bits is the bitwidth
                                 of the quantization,between 2 and 16
        narrow_range ([bool]): 
            True, quantized into the quantization range [1; 2^num_bits - 1]
            False,quantized into the quantization range [0; 2^num_bits - 1]

    Returns:
        tvm.tensor.Tensor
    """
    shape = get_shape(input_data)
    utils.check_shape(shape)
    utils.elemwise_shape_check(input_gradients.shape, input_data.shape)

    utils.ops_dtype_check(input_data.dtype, utils.DtypeForDavinci.FLOAT32)
    utils.ops_dtype_check(input_gradients.dtype, utils.DtypeForDavinci.FLOAT32)

    nudged_min, nudged_max, scale = nudge_min_max(min, max, num_bits,
                                                  narrow_range)

    zero_tensor = tvm.compute(input_data.shape,
                              lambda *i: tvm.const(0, dtype="float32"),
                              name="zero_tensor")
    nudged_max_tensor = topi.add(zero_tensor, nudged_max)
    nudged_min_tensor = topi.add(zero_tensor, nudged_min)

    # where((input_data<=nudged_max)&(x>=nudged_min),1,0),Convert the input to 0 and 1 tensor
    between_nudged_min_max = _cmpare_value(input_data, nudged_min_tensor,
                                           nudged_max_tensor)

    res = topi.multiply(input_gradients, between_nudged_min_max)

    return res
Exemplo n.º 15
0
def _quantized_max_pool_compute(x, window, stride, qdrtensors, out_dtype,
                                padding, quant_algo, _):
    """compute for quantized avgpool"""
    res, _, _ = maxpool_with_argmax(x, window, stride, padding)

    if quant_algo is not None:
        scale_req, offset_req = qdrtensors
        # scale
        res = topi.multiply(res, scale_req[0])
        if quant_algo[0] == 1:
            # offset
            res = topi.add(res, offset_req[0])

    res = topi.cast(res, out_dtype)
    return res
Exemplo n.º 16
0
def sigmoid_cross_entropy_with_logits_grad_compute(predict, tar, dout):
    """sigmoid_cross_entropy_with_logits_grad compute implemention"""
    dtype = predict.dtype
    if dtype == "float16":
        predict = topi.cast(predict, "float32")
        tar = topi.cast(tar, "float32")
        dout = topi.cast(dout, "float32")

    # e^x
    val1 = Exp(predict, target='cce')
    # 1 + e^x
    val2 = topi.add(val1, tvm.const(SCALAR_ONE, dtype="float32"))
    # e^x / (1 + e^x)
    val3 = topi.divide(val1, val2)
    # -target
    val4 = topi.multiply(tar, tvm.const(SCALAR_NEGTIVE_ONE, dtype="float32"))
    # e^x / (1 + e^x) -y
    val5 = topi.add(val3, val4)

    result = topi.multiply(val5, dout)

    if dtype == "float16":
        result = topi.cast(result, dtype)
    return result
Exemplo n.º 17
0
Arquivo: asin.py Projeto: zhuyawen/akg
def _asin_compute(data_input):
    """Compute asin"""

    dtype = data_input.dtype
    boundary = tvm.const(BOUNDARY, "float32")

    # Change dtype to float32
    if dtype == "float16":
        data_input = topi.cast(data_input, "float32")

    # Sign mask
    data_sign = sign(data_input)

    # All positive
    data1 = topi.multiply(data_input, data_sign)

    # x belongs to (0, 2^(-0.5))
    choice_1 = topi.minimum(data1, boundary)
    choice_1 = topi.subtract(choice_1, boundary)
    choice_1_floor = akg.lang.cce.floor(choice_1)
    # the dtype of choice_1_floor is int32, need to be cast to fp32.
    if utils.product_is_mini():
        choice_1_floor = topi.cast(choice_1_floor, "float16")
        choice_1_floor = topi.cast(choice_1_floor, "float32")
    else:
        choice_1_floor = topi.cast(choice_1_floor, "float32")
    choice_1 = topi.multiply(choice_1_floor, neg_one_const("float32"))

    taylor1 = _taylor_compute(data1)
    res_1 = topi.multiply(taylor1, choice_1)

    # x belongs to (2^(-0.5), 1)
    choice_2 = topi.subtract(one_const("float32"), choice_1)
    data2 = topi.subtract(one_const("float32"), topi.multiply(data1, data1))
    data2_sqrt = _sqrt(data2)

    taylor2 = _taylor_compute(data2_sqrt, data2)

    res_2 = topi.multiply(taylor2, neg_one_const("float32"))
    res_2 = topi.add(res_2, tvm.const(HALF_PI, "float32"))
    res_2 = topi.multiply(res_2, choice_2)

    # Restore sign
    res_1 = topi.add(res_1, res_2)
    res_1 = topi.multiply(res_1, data_sign)

    # Restore dtype
    if dtype == "float16":
        res_1 = topi.cast(res_1, "float16")

    return res_1
Exemplo n.º 18
0
def bn_gamma_grad(head, in_data, data_sum, layout="NHWC"):
    if layout == "NCHW":
        head = topi.tranpose(head, (0, 2, 3, 1))

    n, h, w, c = head.shape
    n = n.value
    h = h.value
    w = w.value
    c = c.value
    scale = tvm.const(n * h * w, head.dtype)
    mean = topi.divide(data_sum, scale)
    x_hat = topi.subtract(in_data, mean)
    x_hat_mul = topi.multiply(x_hat, head)
    bn_gamma_grad = topi.sum(x_hat_mul, axis=(0, 1, 2))
    return bn_gamma_grad
Exemplo n.º 19
0
 def _sinh_taylor_compute(x):
     """sinh(x) value is x * (1 + x^2( 1/3! + x^2(1/5! + x^2/7!)))"""
     taylor_params = [
         tvm.const(0.1666666666666666666666666666666666, dtype),
         tvm.const(0.0083333333333333333333333333333333, dtype),
         tvm.const(0.0001984126984126984126984126984126, dtype)
     ]
     x_square = topi.multiply(x, x)
     sinh_taylor = tvm.compute(
         x.shape,
         lambda *indice: x(*indice) *
         (1 + x_square(*indice) *
          (taylor_params[0] + x_square(*indice) *
           (taylor_params[1] + x_square(*indice) * taylor_params[2]))),
         name="sinh_taylor")
     return sinh_taylor
Exemplo n.º 20
0
def fused_relu_grad_bn_reduce_grad(data_1,
                                   data_2,
                                   data_3,
                                   data_4,
                                   data_5,
                                   data_6,
                                   data_7,
                                   data_8,
                                   data_9,
                                   layout='NHWC',
                                   target=utils.CUDA):
    """
    fused_relu_grad_bn_reduce_grad.

    Args:
        data_1~data_9: tvm.tensor.Tensor.
        layout: input layout, only 'NCHW', 'NHWC' supported

    Returns:
        tvm.tensor.Tensor.
    """
    transform_list = [data_7, data_8, data_9]
    for i in transform_list:
        if layout == "NCHW":
            i = topi.transpose(i, axes=(0, 2, 3, 1))
        elif layout != "NHWC":
            raise NotImplementedError(
                'Layout not supported {} '.format(layout))

    data_tmp1 = topi.multiply(data_4, data_5)
    n, h, w, c = data_9.shape
    data_tmp2 = topi.full_like(data_tmp1, 1.0 / (n * h * w))
    data_tmp3 = topi.multiply(data_tmp1, data_tmp2)

    data_tmp5 = topi.full_like(data_9, 0.0)
    data_tmp6 = topi.greater(data_9, data_tmp5)

    data_tmp7 = topi.where(data_tmp6, data_8, data_tmp5)

    data_tmp8 = topi.cast(data_tmp7, 'float32')
    data_tmp9 = topi.full_like(data_tmp8, n * h * w)
    data_tmp10 = topi.multiply(data_tmp8, data_tmp9)
    data_tmp12 = topi.subtract(data_tmp10, data_3)
    data_tmp14 = topi.cast(data_7, 'float32')
    data_tmp15 = topi.multiply(data_6, data_tmp2)

    data_tmp17 = topi.subtract(data_tmp14, data_tmp15)
    data_tmp18 = topi.multiply(data_2, data_tmp17)
    data_tmp20 = topi.divide(data_tmp18, data_1)
    data_tmp21 = topi.subtract(data_tmp12, data_tmp20)
    data_tmp22 = topi.multiply(data_tmp3, data_tmp21)
    data_out = topi.cast(data_tmp22, 'float16')

    return data_out
Exemplo n.º 21
0
def fake_quant_with_min_max_vars_per_channel_gradient_compute(input_gradients, inputs_data,
                                                              min_broadcast, max_broadcast,
                                                              num_bits=8,
                                                              narrow_range=False):
    """Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation."""
    shape = get_shape(inputs_data)
    sum_axis = [x for x in range(0, len(shape) - 1)]
    dtype = inputs_data.dtype

    nudged_min, nudged_max, _ = nudged_min_max_compute(min_broadcast, max_broadcast, num_bits, narrow_range)
    # both zero yields zero
    bool_both_zero_value = bool_both_zero_compute(min_broadcast, max_broadcast)
    bool_both_zero_negate = _bool_negate(bool_both_zero_value)

    bool_less_equal_nudged_max = _less_equal_compare_float32(inputs_data, nudged_max)
    bool_more_equal_nudged_min = _less_equal_compare_float32(nudged_min, inputs_data)
    bool_between_nudged_min_max = topi.multiply(bool_less_equal_nudged_max, bool_more_equal_nudged_min)
    # gradient is 1 if input in [min, max] else 0
    backprops_input_tmp = topi.multiply(bool_between_nudged_min_max, input_gradients)
    backprops_bool_both_zero = topi.multiply(backprops_input_tmp, bool_both_zero_value)
    # if min and max are both zero, gradients is input_gradients
    input_gradients_both_zero = topi.multiply(input_gradients, bool_both_zero_negate)
    backprops_input = topi.add(backprops_bool_both_zero, input_gradients_both_zero)

    # gradients for min is input_gradients if inputs_data < nudged_min else 0
    bool_less_nudged_min = _bool_negate(bool_more_equal_nudged_min)
    output_backprop_min_tmp = topi.multiply(bool_less_nudged_min, input_gradients)
    # gradients for min is 0 if min and max are both 0
    output_backprop_min_bool = topi.multiply(output_backprop_min_tmp, bool_both_zero_value)
    if sum_axis == []:
        output_backprop_min = output_backprop_min_bool
    else:
        output_backprop_min = topi.sum(output_backprop_min_bool, sum_axis)

    # gradients for max is input_gradients if inputs_data > nudged_max else 0
    bool_more_nudged_max = _bool_negate(bool_less_equal_nudged_max)
    output_backprop_max_tmp = topi.multiply(bool_more_nudged_max, input_gradients)
    # gradients for max is 0 if min and max are both 0
    output_backprop_max_bool = topi.multiply(output_backprop_max_tmp, bool_both_zero_value)
    if sum_axis == []:
        output_backprop_max = output_backprop_max_bool
    else:
        output_backprop_max = topi.sum(output_backprop_max_bool, sum_axis)
    return backprops_input, output_backprop_min, output_backprop_max
Exemplo n.º 22
0
def sgd_compute(parameters, gradient, learning_rate, accum, momentum, stat,
                dampening=0.0, weight_decay=0.0, nesterov=False):
    """sgd compute implementation"""
    dtype = parameters.dtype
    if dtype == "float16":
        parameters = topi.cast(parameters, "float32")
        accum = topi.cast(accum, "float32")
        learning_rate = topi.cast(learning_rate, "float32")
        gradient = topi.cast(gradient, "float32")
        momentum = topi.cast(momentum, "float32")
        stat = topi.cast(stat, "float32")

    # if weight_decay != 0.0, need compute grad_delta to update gradient
    if weight_decay != 0.0:
        parameters = topi.multiply(parameters, tvm.const(1.0, 'float32'))
        grad_delta = topi.multiply(parameters, weight_decay)
        gradient = topi.add(gradient, grad_delta)

    stat_mid = topi.multiply(stat, tvm.const(-1, "float32"))
    stat_act = topi.add(stat_mid, tvm.const(1, "float32"))

    dampening_t = topi.multiply(stat_act, dampening)

    # update accum
    accum_delta = tvm.compute(accum.shape, lambda *indice: accum(*indice) * momentum[0])

    gradient_damp = topi.multiply(gradient, dampening_t)
    accum_t = topi.add(accum_delta, gradient)
    if dampening != 0.0:
        accum_t = topi.subtract(accum_t, gradient_damp)

    # update parameters
    if nesterov:
        parameters_delta = tvm.compute(gradient.shape, lambda *indice: gradient(*indice) * learning_rate[0])
        parameters_delta_2 = tvm.compute(accum_t.shape, lambda *indice: accum_t(*indice) * momentum[0])
        parameters_delta_2 = tvm.compute(parameters_delta_2.shape,
                                         lambda *indice: parameters_delta_2(*indice) * learning_rate[0])
        parameters_delta = topi.add(parameters_delta, parameters_delta_2)
        parameters_t = topi.subtract(parameters, parameters_delta)
    else:
        parameters_delta = tvm.compute(accum_t.shape, lambda *indice: accum_t(*indice) * learning_rate[0])
        parameters_t = topi.subtract(parameters, parameters_delta)

    # update stat
    stat_t = topi.multiply(stat_act, tvm.const(NUM_ZERO, 'float32'))


    if dtype == "float16":
        parameters_t = topi.cast(parameters_t, "float16")
        accum_t = topi.cast(accum_t, "float16")
        stat_t = topi.cast(stat_t, "float16")

    return parameters_t, accum_t, stat_t
Exemplo n.º 23
0
def _after_res_compute(abs_data):
    """
    compute bessel_i1e for abs value of data greater than or equal to 3.75

    Algrithm:
    t = 3.75 / x
    I1(x) = (1 / sqrt(x))*(0.39894228 - 0.03988024t - 0.00362018t^2
                           + 0.00163801t^3 - 0.01031555t^4 + 0.02282967t^5
                           - 0.02895312t^6 + 0.01787654t^7 - 0.00420059t^8)
    """
    broad_const_limit = akg.lang.cce.broadcast(
        akg.tvm.const(CONST_LIMIT, abs_data.dtype), abs_data.shape)
    data = div(broad_const_limit, abs_data)
    after_res = topi.multiply(data, ITR_AFTER[LEN_AFTER - 1])
    after_res = topi.add(after_res, ITR_AFTER[LEN_AFTER - 2])
    for iter_number in ITR_AFTER[LEN_AFTER - 3::-1]:
        after_res = mul(after_res, data)
        after_res = topi.add(after_res, iter_number)
    abs_data_rsqrt = rsqrt(abs_data)
    after_res = mul(after_res, abs_data_rsqrt)
    return after_res
Exemplo n.º 24
0
def fused_l2loss_grad(data_f16, data_f32, layout='NHWC', fill_data=4e-05):
    """
    fused_l2loss_grad.

    Args:
        input: tvm.tensor.Tensor.

    Returns:
        ret.
    """
    if layout == "NCHW":
        data_f16 = topi.transpose(data_f16, axes=(0, 2, 3, 1))
    elif layout != "NHWC":
        raise NotImplementedError('Layout not supported {} '.format(layout))

    data_f16 = topi.cast(data_f16, 'float32')
    constant_tmp = topi.cast(fill_data, 'float32')
    data_constant = topi.full_like(data_f32, constant_tmp)
    data_out = topi.multiply(data_constant, data_f32)
    data_out = topi.add(data_f16, data_out)

    return data_out
Exemplo n.º 25
0
def _sinh_taylor(x):
    """compute sinh with taylor method"""

    sinh_2x_times = 3
    dtype = x.dtype

    def _sinh_taylor_compute(x):
        """sinh(x) value is x * (1 + x^2( 1/3! + x^2(1/5! + x^2/7!)))"""
        taylor_params = [
            tvm.const(0.1666666666666666666666666666666666, dtype),
            tvm.const(0.0083333333333333333333333333333333, dtype),
            tvm.const(0.0001984126984126984126984126984126, dtype)
        ]
        x_square = topi.multiply(x, x)
        sinh_taylor = tvm.compute(
            x.shape,
            lambda *indice: x(*indice) *
            (1 + x_square(*indice) *
             (taylor_params[0] + x_square(*indice) *
              (taylor_params[1] + x_square(*indice) * taylor_params[2]))),
            name="sinh_taylor")
        return sinh_taylor

    def _sinh_2x(sinh_x):
        """sinh(2x) = 2*sinh(x)*sqrt(sinh(x)^2+1)"""
        sinh_x_square = topi.multiply(sinh_x, sinh_x)
        sinh_x_square_add_one = topi.add(sinh_x_square, 1)
        sqrt_value = topi.sqrt(sinh_x_square_add_one)
        sinh_x_mul_sqrt_value = topi.multiply(sinh_x, sqrt_value)
        sinh_2x = topi.multiply(2, sinh_x_mul_sqrt_value)
        return sinh_2x

    # First, shrink the value of x and then use the double angle formula to calculate
    x_small = topi.multiply(x, tvm.const(1 / (2**sinh_2x_times), dtype))
    res = _sinh_taylor_compute(x_small)
    for i in range(sinh_2x_times):
        res = _sinh_2x(res)
    return res
Exemplo n.º 26
0
def erfc(input_x):
    r"""
    Computes the complementary error of input_x.

    .. math::
        \operatorname{erfc} (x) = 1 - \operatorname{erf} (x).

    Args:
        input_x (tvm.tensor.Tensor): Input tensor, only support float16, float32.

    Returns:
        tvm.tensor.Tensor with the same shape and dtype as input_x.
    """

    dtype = input_x.dtype

    vc_util.ops_dtype_check(dtype, vc_util.DtypeForDavinci.ALL_FLOAT)
    vc_util.check_shape(input_x.shape)

    erfc_res = topi.add(dc.one_const(dtype),
                        topi.multiply(dc.neg_one_const(dtype), erf(input_x)))

    return erfc_res
Exemplo n.º 27
0
def _do_atan_taylor(data):
    """
    Taylor algorithm for atan.

        if x > 0 and x < tan(pi/8):
            atan(x) = x - x^3/3 + x^5/5 - x^7/7 ...
        elif x > tan(pi/8) and x < tan(pi/4):
            atan(x) = atan(y) + atan((x-y)/(1+xy))

    Args:
        data (tvm.tensor.Tensor): Input data.

    Returns:
        A tvm.tensor.Tensor of atan(x).
    """
    dtype = data.dtype

    tensor_offset = tvm.const(TAN_PI_BY_EIGHT, dtype)
    deno = topi.multiply(data, tvm.const(TAN_PI_BY_EIGHT, dtype))
    deno = topi.add(deno, dc.one_const(dtype))
    molecule = topi.subtract(data, tensor_offset)
    ddata = topi.divide(molecule, deno)
    ddata = topi.abs(ddata)

    square_ddata = topi.multiply(ddata, ddata)
    res = tvm.const(ATAN_TAYLOR_COEF[CONST_ITERTOR], dtype)
    for i in reversed(range(CONST_ITERTOR)):
        res = topi.multiply(res, square_ddata)
        res = topi.add(res, tvm.const(ATAN_TAYLOR_COEF[i], dtype))
    res = topi.multiply(res, ddata)
    res = topi.add(res, tvm.const(CONST_PI_BY_EIGHT, dtype))

    square_data = topi.multiply(data, data)
    res2 = tvm.const(ATAN_TAYLOR_COEF[CONST_ITERTOR2], dtype)
    for i in reversed(range(CONST_ITERTOR2)):
        res2 = topi.multiply(res2, square_data)
        res2 = topi.add(res2, tvm.const(ATAN_TAYLOR_COEF[i], dtype))
    return topi.minimum(res, topi.multiply(res2, data))
Exemplo n.º 28
0
def LambApplyOptimizerAssign(grad, input_v, input_m, input_param, beta_1,
                             one_minus_beta_1, beta_2, one_minus_beta_2,
                             epsilon, steps, do_use_weight, weight_decay_rate):

    # compute next_v
    square_grad = topi.multiply(grad, grad)

    # mul_3
    mul_3_result = topi.multiply(square_grad, one_minus_beta_2)

    # mul_2
    mul_2_result = topi.multiply(input_v, beta_2)

    # compute: next_v = (multiply(self.beta_2, v) + multiply(1.0 - self.beta_2, square(grad)))
    next_v = topi.add(mul_2_result, mul_3_result)

    # compute next_m
    mul_0_result = topi.multiply(input_m, beta_1)

    # mul_1
    mul_1_result = topi.multiply(grad, one_minus_beta_1)

    # compute: next_m = (multiply(self.beta_1, m) + multiply(1.0 - self.beta_1, grad))
    next_m = topi.add(mul_0_result, mul_1_result)

    const_one = akg.tvm.const(1.0, input_v.dtype)

    # compute: beta1_correction = (1 - self.beta_1 ** steps)
    beta_1_steps = pow_compute(beta_1, steps, grad)
    neg_beta_1_step = neg(beta_1_steps, utils.CCE)
    beta1_correction = topi.add(neg_beta_1_step, const_one)

    # compute: beta2_correction = (1 - self.beta_2 ** steps)
    beta_2_steps = pow_compute(beta_2, steps, grad)
    neg_beta_2_step = neg(beta_2_steps, utils.CCE)
    beta2_correction = topi.add(neg_beta_2_step, const_one)

    # compute: next_m_unbiased = next_m / beta1_correction
    next_m_unbiased = Divide(next_m, beta1_correction, utils.CCE)
    # compute: next_v_unbiased = next_v / beta2_correction
    next_v_unbiased = Divide(next_v, beta2_correction, utils.CCE)

    # compute update
    sqrt_next_v = topi.sqrt(next_v_unbiased)
    # add_2
    add_2_result = topi.add(sqrt_next_v, epsilon)
    # compute: update = next_m / (sqrt(next_v) + self.epsilon)
    update = Divide(next_m_unbiased, add_2_result, utils.CCE)

    # compute do_use_weight_decay
    do_use_weight_mul = topi.multiply(input_param, weight_decay_rate)
    do_use_weight_decay = topi.multiply(do_use_weight_mul, do_use_weight)
    update = topi.add(do_use_weight_decay, update)

    attrs = {'enable_auto_inline': False}

    dim_info, _ = lamb_apply_optimizer_assign_set_dim_func(grad)
    if dim_info != "":
        attrs["dim"] = dim_info

    return update, next_v, next_m, attrs
Exemplo n.º 29
0
def nudged_min_max_compute(min_broadcast, max_broadcast, num_bits,
                           narrow_range):
    """
    Calculate the maximum and minimum values of the quantization.

    Notes:
        Each channel scale[i] euqal to (max_broadcast[i] - min_broadcast[i]) / (quant_max - quant_min).
        Then compute nudged_zero_point:
                nudged_zero_point = floor(between_min_max_float + 0.5) + less_quant_min_float + more_quant_max_float,
        between_min_max_float is first calculated by:
                zero_point_from_min = (quant_min_float - min_broadcast) / scale,
        then between_min_max_float = zero_point_from_min, which min_broadcast <= zero_point_from_min <= max_broadcast.
        Besides, the value of less_quant_min_float is equal to quant_min or zero, zero_point_from_min < quant_min_float,
        the value is quant_min, else is 0. The same as more_quant_max_float.
        Finally according to scale and nudged_zero_point to compute nudged_min and nudged_max:
                 nudged_min = (quant_min - nudged_zero_point) * scale
                 nudged_max = (quant_max - nudged_zero_point) * scale

    Args:
        min_broadcast (tvm.tensor.Tensor): minimum value to be quantified for each channel.
        max_broadcast (tvm.tensor.Tensor): maximum value to be quantified for each channel.
        num_bits (int): num_bits is the bitwidth of the quantization, range [2,16].
        narrow_range (bool): if True, for each channel, quantized into the quantization range [0, 2^num_bits - 1] else
                      quantized into the quantization range [1, 2^num_bits - 1].

    Returns:
        nudged_min (tvm.tensor.Tensor): The same type and shape as min_broadcast.
        nudged_max (tvm.tensor.Tensor): The same type and shape as max_broadcast.
        scale (tvm.tensor.Tensor): The same type and shape as max_broadcast.
    """

    dtype = min_broadcast.dtype
    quant_min = 1 if narrow_range else 0
    quant_max = (2**num_bits) - 1

    # because of need compute each channel, so quant_min and quant_max need to broadcast.
    quant_min_float = topi.full(min_broadcast.shape, dtype,
                                tvm.const(quant_min, dtype))
    quant_max_float = topi.full(min_broadcast.shape, dtype,
                                tvm.const(quant_max, dtype))

    # caculate each channel max and min difference.
    max_sub_min = topi.subtract(max_broadcast, min_broadcast)
    quant_max_sub_quant_min = topi.subtract(quant_max_float, quant_min_float)
    # compute scale = (max_broadcast - min_broadcast) / (quant_max - quant_min)
    # and min_div_scale = min_broadcast / scale
    if product_is_mini():
        scale = mul(max_sub_min,
                    reciprocal(quant_max_sub_quant_min),
                    target=utils.CCE)
        min_div_scale = Mul(min_broadcast, reciprocal(scale), target=utils.CCE)
    else:
        scale = Divide(max_sub_min, quant_max_sub_quant_min, target=utils.CCE)
        min_div_scale = Divide(min_broadcast, scale, target=utils.CCE)

    # zero_point_from_min = quant_min_float - min_broadcast / scale
    zero_point_from_min = topi.subtract(quant_min_float, min_div_scale)
    # if zero_point_from_min < quant_min_float, bool_less_quant_min_float = 1 else 0
    bool_less_quant_min_float = less_compare_float32(zero_point_from_min,
                                                     quant_min_float)
    # if quant_max_float < zero_point_from_min, bool_more_quant_max_float = 1 else 0
    bool_more_quant_max_float = less_compare_float32(quant_max_float,
                                                     zero_point_from_min)

    # according to above bool param to select effective value
    less_quant_min_float = topi.multiply(quant_min_float,
                                         bool_less_quant_min_float)
    more_quant_max_float = topi.multiply(quant_max_float,
                                         bool_more_quant_max_float)

    # compute which num is not less than quant_min_float and not large than quant_max_float
    tensor_one = topi.full(min_broadcast.shape, dtype, dc.one_const(dtype))
    bool_not_less_quant_min_float = topi.subtract(tensor_one,
                                                  bool_less_quant_min_float)
    bool_not_more_quant_max_float = topi.subtract(tensor_one,
                                                  bool_more_quant_max_float)
    bool_between_min_max = topi.multiply(bool_not_less_quant_min_float,
                                         bool_not_more_quant_max_float)
    between_min_max_float = topi.multiply(zero_point_from_min,
                                          bool_between_min_max)
    # add 0.5 to num which min <= num <= max and then floor them.
    between_min_max_add_half_one = topi.add(between_min_max_float,
                                            dc.half_const(dtype))
    between_min_max_round = akg.lang.ascend.floor(between_min_max_add_half_one)
    if product_is_mini():
        between_min_max_round = topi.cast(between_min_max_round, "float16")

    between_min_max_round = topi.cast(between_min_max_round, "float32")

    # calculate the maximum and minimum values of the quantization
    nudged_zero_point_tmp = topi.add(less_quant_min_float,
                                     more_quant_max_float)
    nudged_zero_point = topi.add(nudged_zero_point_tmp, between_min_max_round)

    nudged_min_tmp = topi.subtract(quant_min_float, nudged_zero_point)
    nudged_max_tmp = topi.subtract(quant_max_float, nudged_zero_point)
    nudged_min = topi.multiply(nudged_min_tmp, scale)
    nudged_max = topi.multiply(nudged_max_tmp, scale)
    res = [nudged_min, nudged_max, scale]

    return res
Exemplo n.º 30
0
def _apply_adagrad_da_compute(var, gradient_accum, gradient_squared_accum,
                              grad, lr, l1, l2, global_step):
    """Compute adagrad_da."""
    dtype = var.dtype
    # cast to float32 for higher precision
    if dtype == "float16":
        gradient_accum = topi.cast(gradient_accum, "float32")
        gradient_squared_accum = topi.cast(gradient_squared_accum, "float32")
        grad = topi.cast(grad, "float32")
        lr = topi.cast(lr, "float32")
        l1 = topi.cast(l1, "float32")
        l2 = topi.cast(l2, "float32")
    if product_is_mini():
        global_step = topi.cast(global_step, "float16")
        global_step = topi.cast(global_step, "float32")
    else:
        global_step = topi.cast(global_step, "float32")

    # 1.grad_accum += grad
    gradient_accum = topi.add(gradient_accum, grad)

    # 2.grad_squared_accum += grad * grad
    gs = topi.multiply(grad, grad)
    gradient_squared_accum = topi.add(gradient_squared_accum, gs)

    # 3.if l1 > 0: tmp_val = Sign(grad_accum) * max(|grad_accum|-l1*global_step, 0)
    #   else:      tmp_val = grad_accum
    sign_val = Sign(gradient_accum)
    abs_val = topi.abs(gradient_accum)
    mul_val = topi.multiply(global_step, l1)
    sub_val = topi.subtract(abs_val, mul_val)
    max_val = topi.maximum(sub_val, tvm.const(0, sub_val.dtype))
    tmp_val = topi.multiply(sign_val, max_val)

    def select(l1, tmp_val, gradient_accum):
        """Returns tmp_val if l1 > 0 else gradient_accum."""
        if product_is_mini():
            l1 = topi.cast(l1, "float16")
            tmp_val = topi.cast(tmp_val, "float16")
            gradient_accum = topi.cast(gradient_accum, "float16")
        tmp_val = akg.tvm.compute(
            tmp_val.shape, lambda *i: tvm.expr.Select(l1[0] > 0, tmp_val(*i),
                                                      gradient_accum(*i)))
        return topi.cast(tmp_val, "float32") if product_is_mini() else tmp_val

    tmp_val = select(l1, tmp_val, gradient_accum)

    # 4.x_value = -1 * lr * tmp_val
    x_value = topi.multiply(lr, tvm.const(-1, "float32"))
    x_value = topi.multiply(x_value, tmp_val)

    # 5.y_value = l2 * global_step * lr + sqrt(grad_squared_accum)
    pro_val = topi.multiply(l2, global_step)
    pro_val = topi.multiply(pro_val, lr)
    sqrt_val = sqrt(gradient_squared_accum, target=utils.CCE)
    y_value = topi.add(pro_val, sqrt_val)

    # 6.var = x_value / y_value
    if product_is_mini():
        y_rec = reciprocal(y_value, target=utils.CCE)
        var_out = topi.multiply(x_value, y_rec)
    else:
        var_out = topi.divide(x_value, y_value)

    if dtype == "float16":
        var_out = akg.lang.ascend.cast_to(var_out, "float16")
        gradient_accum = akg.lang.ascend.cast_to(gradient_accum, "float16")
        gradient_squared_accum = akg.lang.ascend.cast_to(
            gradient_squared_accum, "float16")

    return var_out, gradient_accum, gradient_squared_accum